Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28952
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone
Author(s): Goodman, Jessica
Copplestone, David
Laptev, Gennady V
Gashchak, Sergey
Auld, Stuart K J R
Keywords: Daphnia pulex
life history
mutation
radiation
Issue Date: Mar-2019
Date Deposited: 14-Mar-2019
Citation: Goodman J, Copplestone D, Laptev GV, Gashchak S & Auld SKJR (2019) Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone. Ecology and Evolution, 9 (5), pp. 2640-2650. https://doi.org/10.1002/ece3.4931
Abstract: Ionizing radiation is a mutagen with known negative impacts on individual fitness. However, much less is known about how these individual fitness effects translate into population‐level variation in natural environments that have experienced varying levels of radiation exposure. In this study, we sampled genotypes of the freshwater crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl Exclusion Zone (CEZ). Each lake has experienced very different levels of chronic radiation exposure since a nuclear power reactor exploded there over thirty years ago. The sampled Daphnia genotypes represent genetic snapshots of current populations and allowed us to examine fitness‐related traits under controlled laboratory conditions at UK background dose rates. We found that whilst there was variation in survival and schedules of reproduction among populations, there was no compelling evidence that this was driven by variation in exposure to radiation. Previous studies have shown that controlled exposure to radiation at dose rates included in the range measured in the current study reduce survival, or fecundity, or both. One limitation of this study is the lack of available sites at high dose rates, and future work could test life history variation in various organisms at other high radiation areas. Our results are nevertheless consistent with the idea that other ecological factors, for example competition, predation or parasitism, are likely to play a much bigger role in driving variation among populations than exposure to the high radiation dose rates found in the CEZ. These findings clearly demonstrate that it is important to examine the potential negative effects of radiation across wild populations that are subject to many and varied selection pressures as a result of complex ecological interactions.
DOI Link: 10.1002/ece3.4931
Rights: © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Goodman_et_al-2019-Ecology_and_Evolution.pdfFulltext - Published Version732.24 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.