http://hdl.handle.net/1893/2858
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | A 'culture' change in catchment microbiology? |
Author(s): | Oliver, David Heathwaite, A Louise Haygarth, Philip M |
Contact Email: | david.oliver@stir.ac.uk |
Keywords: | Indicator organism culture qPCR water quality Water quality biological assessment Water pollution |
Issue Date: | Sep-2010 |
Date Deposited: | 8-Apr-2011 |
Citation: | Oliver D, Heathwaite AL & Haygarth PM (2010) A 'culture' change in catchment microbiology?. Hydrological Processes, 24 (20), pp. 2973-2976. https://doi.org/10.1002/hyp.7837 |
Abstract: | The development of a robust evidence base to inform policy and practice related to catchment microbial dynamics, water quality and human health must be grounded on proven techniques used for microbial water quality analysis. Currently, water regulators are in an exciting transition period with new techniques borne out of the ‘molecular revolution’ beginning to offer a means of characterising microbial watercourse pollution that challenge ‘tried and tested’ culture-based reference methods. In this commentary we advocate caution regarding the reliability of quantitative molecular tools and stress the need to continue programmes of cross-validation between enumeration approaches. In turn, novel detection (molecular) methodologies can be validated over time at the larger landscape scale (i.e. the scale at which the policy is implemented) against well-established ‘tried and tested’ (culture-based) reference methods. This will ensure that hydrologically relevant research and policy questions under consideration still deliver a demonstrable impact for regulators. Indeed, the current European Union (EU) legislation for the microbial quality of bathing and shellfish harvesting waters demands that specific standards are derived from culture-based criteria, highlighting the need to sustain such approaches without their complete abandonment in the face of emerging molecular detection techniques (CEC, 2006a,b). Thus, paradoxically, new molecular technology may compromise the development of the existing, and rather immature, evidence base of catchment microbial dynamics if cross-validation is not properly undertaken. The danger then is that molecular approaches could move on to become the ‘gold-standard’ without a thorough understanding of the implications for regulation and aspects of modelling and applied research required to meet current water policy frameworks. |
DOI Link: | 10.1002/hyp.7837 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
HP Today_Oliver_Final version July 2010_corrected.pdf | Fulltext - Accepted Version | 44.6 kB | Adobe PDF | Under Permanent Embargo Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.