Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2813
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil
Author(s): Stubhaug, Ingunn
Tocher, Douglas R
Bell, J Gordon
Dick, James R
Torstensen, Bente E
Contact Email: drt1@stir.ac.uk
Keywords: Atlantic salmon
Salmo salar
fish oil
vegetable oil
Hepatocytes
Lipid metabolism
Fatty acid metabolism
Fatty acids Metabolism
Atlantic salmon
Fishes Food
Vegetable oils
Issue Date: 1-Jun-2005
Date Deposited: 17-Mar-2011
Citation: Stubhaug I, Tocher DR, Bell JG, Dick JR & Torstensen BE (2005) Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 1734 (3), pp. 277-288. https://doi.org/10.1016/j.bbalip.2005.04.003
Abstract: Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven 14C-labelled fatty acids. The fatty acids were; [1-14C]16:0, [1-14C]18:1n-9, [1-14C]18:2n-6, [1-14C]18:3n-3, [1-14C]20:4n-6, [1-14C]20:5n-3, and [1-14C]22:6n-3. After 2 hours of incubation the hepatocytes and medium were analyzed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-14C]18:2n-6 and [1-14C]20:5n-3 and lowest with [1-14C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids the highest recovery was found in phosphatidylcholine, with [1-14C]16:0 and [1-14C]22:6n-3 being the most prominent fatty acids. The rates of β-oxidation were as follows: 20:4n-6 > 18:2n-6 = 16:0 > 18:1n-9 > 22:6n-3 = 18:3n-3 = 20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-14C]16:0 and [1-14C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased β-oxidation activity, and higher recovery in products of desaturation and elongation of [1-14C]18:2n-6 and [1-14C]18:3n-3.
DOI Link: 10.1016/j.bbalip.2005.04.003
Rights: Published in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids by Elsevier. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Volume 1734, Issue 3, June 2005, pp. 277 - 288.; This is the peer reviewed version of this article.; NOTICE: this is the author’s version of a work that was accepted for publication in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, VOL 1734, ISSUE 3, (June 2005). DOI 10.1016/j.bbalip.2005.04.003.

Files in This Item:
File Description SizeFormat 
Stubhaug et al final.pdfFulltext - Accepted Version1.1 MBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.