Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26890
Appears in Collections:Psychology Journal Articles
Peer Review Status: Refereed
Title: Modulating perceptual complexity and load reveals degradation of the visual working memory network in ageing
Authors: Wijeakumar, Sobanawartiny
Magnotta, Vincent A
Spencer, John P
Contact Email: sobanawartiny.wijeakumar@stir.ac.uk
Issue Date: 15-Aug-2017
Citation: Wijeakumar S, Magnotta VA & Spencer JP (2017) Modulating perceptual complexity and load reveals degradation of the visual working memory network in ageing, NeuroImage, 157, pp. 464-475.
Abstract: Previous neuroimaging studies have reported a posterior to anterior shift of activation in ageing (PASA). Here, we explore the nature of this shift by modulating load (1,2 or 3 items) and perceptual complexity in two variants of a visual working memory task (VWM): a ‘simple’ color and a ‘complex’ shape change detection task. Functional near-infrared spectroscopy (fNIRS) was used to record changes in activation in younger (N=24) and older adults (N=24). Older adults exhibited PASA by showing lesser activation in the posterior cortex and greater activation in the anterior cortex when compared to younger adults. Further, they showed reduced accuracy at loads 2 and 3 for the simple task and across all loads for the complex task. Activation in the posterior and anterior cortices was modulated differently for younger and older adults. In older adults, increasing load in the simple task was accompanied by decreasing activation in the posterior cortex and lack of modulation in the anterior cortex, suggesting the inability to encode and/or maintain representations without much aid from higher-order centres. In the complex task, older adults recruited verbal working memory areas in the posterior cortex, suggesting that they used adaptive strategies such as labelling the shape stimuli. This was accompanied by reduced activation in the anterior cortex reflecting the inability to exert top-down modulation to typical VWM areas in the posterior cortex to improve behavioral performance.
DOI Link: http://dx.doi.org/10.1016/j.neuroimage.2017.06.019
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.

Files in This Item:
File Description SizeFormat 
Wijeakumar_NeuroImage_2017.pdf884.65 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.