Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/26100
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil
Authors: Subke, Jens-Arne
Moody, Catherine S.
Hill, Timothy C.
Voke, Naomi R
Toet, Sylvia
Ineson, Phil
Teh, Yit Arn
Contact Email: jens-arne.subke@stir.ac.uk
Issue Date: Jan-2018
Citation: Subke J, Moody CS, Hill TC, Voke NR, Toet S, Ineson P & Teh YA (2018) Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil, Soil Biology and Biochemistry, 116, pp. 323-332.
Abstract: Aerated soils represent an important sink for atmospheric methane (CH4), due to the effect of methanotrophic bacteria, thus mitigating current atmospheric CH4increases. Whilst rates of CH4oxidation have been linked to types of vegetation cover, there has been no systematic investigation of the interaction between plants and soil in relation to the strength of the soil CH4sink. We used quasi-continuous automated chamber measurements of soil CH4and CO2flux from soil collar treatments that selectively include root and ectomycorrhizal (ECM) mycelium to investigate the role of rhizosphere activity as well as the effects of other environmental drivers on CH4uptake in a temperate coniferous forest soil. We also assessed the potential impact of measurement bias from sporadic chamber measurements in altering estimates of soil CO2efflux and CH4uptake. Results show a clear effect of the presence of live roots and ECM mycelium on soil CO2efflux and CH4uptake. The presence of ECM hyphae alone (without plant roots) showed intermediate fluxes of both CO2and CH4relative to soils that either contained roots and ECM mycelium, or soil lacking root- and ECM mycelium. Regression analysis confirmed a significant influence of soil moisture as well as temperature on flux dynamics of both CH4and CO2flux. We further found a surprising increase in soil CH4uptake during the night, and discuss diurnal fluctuations in atmospheric CH4(with higher concentrations during stable atmospheric conditions at night) as a potential driver of CH4oxidation rates. Using the high temporal resolution of our data set, we show that low-frequency sampling results in systematic bias of up-scaled flux estimates, resulting in under-estimates of up to 20% at our study site, due to fluctuations in flux dynamics on diurnal as well as longer time scales.
DOI Link: http://dx.doi.org/10.1016/j.soilbio.2017.10.037
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Subke J, Moody CS, Hill TC, Voke NR, Toet S, Ineson P & Teh YA (2018) Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil, Soil Biology and Biochemistry, 116, pp. 323-332. DOI: 10.1016/j.soilbio.2017.10.037 © 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Subke et al Manuscript_2nd_revision_.pdf472.96 kBAdobe PDFUnder Embargo until 7/11/2018     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.