Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25827
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Fe(III):S(-II) Concentration Ratio Controls the Pathway and the Kinetics of Pyrite Formation during Sulfidation of Ferric Hydroxides
Authors: Wan, Moli
Schröder, Christian
Peiffer, Stefan
Contact Email: christian.schroeder@stir.ac.uk
Keywords: rapid pyrite formation
pathway
polysulfides
reactive ferrous iron
iron-sulfur interaction
ferric hydroxides
Mössbauer spectroscopy
Issue Date: 15-Nov-2017
Citation: Wan M, Schröder C & Peiffer S (2017) Fe(III):S(-II) Concentration Ratio Controls the Pathway and the Kinetics of Pyrite Formation during Sulfidation of Ferric Hydroxides, Geochimica et Cosmochimica Acta, 217, pp. 334-348.
Abstract: The formation of pyrite has been extensively studied because of its abundance in many anoxic environments. Yet, there is no consensus on the underlying pathways and kinetics of its formation. We studied the formation of pyrite during the reaction between reactive ferric hydroxides (goethite and lepidocrocite) and aqueous sulfide in an anoxic glove box at neutral pH. The formation of pyrite was monitored with Mössbauer spectroscopy using 57Fe isotope-enriched ferric (hydr)oxides. The initial molar ratios of Fe(III):S(-II) were adjusted to be ‘high’ with Fe(III) concentrations in excess of sulfide (HR) and ‘low’ (LR) with excess of sulfide. Approximately the same surface area was applied in all HR runs in order to compare the mineral reactivity of ferric hydroxides. Electron transfer between aqueous sulfide and ferric hydroxides in the first 2 hours led to the formation of ferrous iron and methanol-extractable oxidized sulfur (MES). Metastable FeSx formed in all of the experiments. Pyrite formed at a different rate in HR and LR runs although the MES and ferrous iron concentrations were rather similar. In all HR runs, pyrite formation started after 48 hours and achieved a maximum concentration after 1 week. In contrast, pyrite started to form only after 2 months in LR runs (Fe(III):S(-II) ∼ 0.2) with goethite and no pyrite formation was observed in LR with lepidocrocite after 6 months. Rates in LR runs were at least 2-3 orders of magnitude slower than in HR runs. Sulfide oxidation rates were higher with lepidocrocite than with goethite, but no influence of the mineral type on pyrite formation rates in HR runs could be observed. Pyrite formation rates in HR runs could not be predicted by the classical model ofRickard (1975). We therefore propose a novel ferric-hydroxide-surface (FHS) pathway for rapid pyrite formation that is based on the formation of a precursor species >FeIIS2-. Its formation is competitive to FeSx precipitation at high aqueous sulfide concentrations and requires that a fraction of the ferric hydroxide surface not be covered by a surface precipitate of FeSx. Hence, pyrite formation rate decreases with decreasing Fe(III):S(-II)aq ratio. In LR runs, pyrite formation appears to follow the model ofRickard (1975) and to be kinetically controlled by the dissolution of FeS. The FHS-pathway will be prominent in many aquatic systems with terrestrial influence, i.e. abundance of ferric iron. We propose that the Fe(III):S(-II)aqratio can be used as an indicator for rapid pyrite formation during early diagenesis in anoxic/suboxic aquatic systems.
DOI Link: http://dx.doi.org/10.1016/j.gca.2017.08.036
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Wan M, Schröder C & Peiffer S (2017) Fe(III):S(-II) Concentration Ratio Controls the Pathway and the Kinetics of Pyrite Formation during Sulfidation of Ferric Hydroxides, Geochimica et Cosmochimica Acta, 217, pp. 334-348. DOI: 10.1016/j.gca.2017.08.036 © 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
1-s2.0-S0016703717305380-main.pdf1.58 MBAdobe PDFUnder Embargo until 2/9/2018     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.