Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25044
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding
Author(s): Bird, Clare
Darling, Kate
Russell, Ann
Davis, Catherine
Jennifer, Fehrenbacher
Free, Andrew
Wyman, Michael
Ngwenya, Bryne
Contact Email: mw4@stir.ac.uk
Issue Date: 28-Feb-2017
Date Deposited: 28-Feb-2017
Citation: Bird C, Darling K, Russell A, Davis C, Jennifer F, Free A, Wyman M & Ngwenya B (2017) Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding. Biogeosciences, 14, pp. 901-920. https://doi.org/10.5194/bg-14-901-2017
Abstract: We investigated the possibility of bacterial symbiosis in Globigerina bulloides, a palaeoceanographically important, planktonic foraminifer. This marine protist is commonly used in micropalaeontological investigations of climatically sensitive subpolar and temperate water masses as well as wind-driven upwelling regions of the world's oceans. G. bulloides is unusual because it lacks the protist algal symbionts that are often found in other spinose species. In addition, it has a large offset in its stable carbon and oxygen isotopic compositions compared to other planktonic foraminifer species, and also that predicted from seawater equilibrium. This is suggestive of novel differences in ecology and life history of G. bulloides, making it a good candidate for investigating the potential for bacterial symbiosis as a contributory factor influencing shell calcification. Such information is essential to evaluate fully the potential response of G. bulloides to ocean acidification and climate change. To investigate possible ecological interactions between G. bulloides and marine bacteria, 18S rRNA gene sequencing, fluorescence microscopy, 16SrRNA gene metabarcoding and transmission electron microscopy (TEM) were performed on individual specimens ofG. bulloides(type IId) collected from two locations in the California Current. Intracellular DNA extracted from fiveG. bulloidesspecimens was subjected to 16S rRNA gene metabarcoding and, remarkably, 37–87 % of all 16S rRNA gene sequences recovered were assigned to operational taxonomic units (OTUs) from the picocyanobacterium Synechococcus. This finding was supported by TEM observations of intact Synechococcus cells in both the cytoplasm and vacuoles of G. bulloides. Their concentrations were up to 4 orders of magnitude greater inside the foraminifera than those reported for the California Current water column and approximately 5 % of the intracellular Synechococcus cells observed were undergoing cell division. This suggests that Synechococcus is an endobiont of G. bulloides type IId, which is the first report of a bacterial endobiont in the planktonic foraminifera. We consider the potential roles of Synechococcus and G. bulloides within the relationship and the need to determine how widespread the association is within the widely distributed G. bulloides morphospecies. The possible influence of Synechococcus respiration on G. bulloides shell geochemistry is also explored.
DOI Link: 10.5194/bg-14-901-2017
Rights: © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
bg-14-901-2017.pdfFulltext - Published Version4.61 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.