Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24779
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Modelling Wolbachia Infection in a Sex-Structured Mosquito Population Carrying West Nile Virus
Author(s): Farkas, Jozsef Zoltan
Gourley, Stephen
Liu, Rongsong
Yakubu, Abdul-Aziz
Contact Email: jozsef.farkas@stir.ac.uk
Keywords: Wolbachia
sex-structure
West Nile virus
epidemic
stability
Issue Date: Sep-2017
Date Deposited: 11-Jan-2017
Citation: Farkas JZ, Gourley S, Liu R & Yakubu A (2017) Modelling Wolbachia Infection in a Sex-Structured Mosquito Population Carrying West Nile Virus. Journal of Mathematical Biology, 75 (3), pp. 621-647. https://doi.org/10.1007/s00285-017-1096-7
Abstract: Wolbachia is possibly the most studied reproductive parasite of arthropod species. It appears to be a promising candidate for biocontrol of some mosquito borne diseases. We begin by developing a sex-structured model for a Wolbachia infected mosquito population. Our model incorporates the key effects of Wolbachia infection including cytoplasmic incompatibility and male killing. We also allow the possibility of reduced reproductive output, incomplete maternal transmission, and different mortality rates for uninfected/infected male/female individuals. We study the existence and local stability of equilibria, including the biologically relevant and interesting boundary equilibria. For some biologically relevant parameter regimes there may be multiple coexistence steady states including, very importantly, a coexistence steady state in which Wolbachia infected individuals dominate. We also extend the model to incorporate West Nile virus (WNv) dynamics, using an SEI modelling approach. Recent evidence suggests that a particular strain of Wolbachia infection significantly reduces WNv replication in Aedes aegypti. We model this via increased time spent in the WNv-exposed compartment for Wolbachia infected female mosquitoes. A basic reproduction number R0 is computed for the WNv infection. Our results suggest that, if the mosquito population consists mainly of Wolbachia infected individuals, WNv eradication is likely if WNv replication in Wolbachia infected individuals is sufficiently reduced.
DOI Link: 10.1007/s00285-017-1096-7
Rights: © The Author(s) 2017 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Farkas_etal_MathBio_2017.pdfFulltext - Published Version924.28 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.