Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/24447
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | African Savanna-Forest Boundary Dynamics: A 20-Year Study |
Author(s): | Cuni-Sanchez, Aida White, Lee Calders, Kim Jeffery, Kathryn Jane Abernethy, Katharine Burt, Andrew Disney, Mathias Gilpin, Martin Gomez-Dans, Jose L Lewis, Simon L |
Contact Email: | k.a.abernethy@stir.ac.uk |
Issue Date: | 23-Jun-2016 |
Date Deposited: | 26-Oct-2016 |
Citation: | Cuni-Sanchez A, White L, Calders K, Jeffery KJ, Abernethy K, Burt A, Disney M, Gilpin M, Gomez-Dans JL & Lewis SL (2016) African Savanna-Forest Boundary Dynamics: A 20-Year Study. PLoS ONE, 11 (6), Art. No.: e0156934. https://doi.org/10.1371/journal.pone.0156934 |
Abstract: | Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused onin situmeasurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. |
DOI Link: | 10.1371/journal.pone.0156934 |
Rights: | © 2016 Cuni-Sanchez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cuni-Sanchez et al. - 2016 - African Savanna-Forest Boundary Dynamics A 20-Yea.PDF | Fulltext - Published Version | 2.81 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.