Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Bergmann’s Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species (Forthcoming)
Authors: Scriven, Jessica J
Whitehorn, Penelope R
Goulson, Dave
Tinsley, M C
Contact Email:
Issue Date: Oct-2016
Publisher: Public Library of Science
Citation: Scriven JJ, Whitehorn PR, Goulson D & Tinsley MC Bergmann’s Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species (Forthcoming), PLoS ONE.
Abstract: According to Bergmann's rule we expect species with larger body size to inhabit locations with a cooler climate, where they may be well adapted to conserve heat and resist starvation. This rule is generally applied to endotherms. In contrast, body size in ectothermic invertebrates has been suggested to follow the reverse ecogeographic trend: these converse Bergmann's patterns may be driven by the ecological constraints of shorter season length and lower food availability in cooler high latitude locations. Such patterns are particularly common in large insects due to their longer development times. As large and facultatively endothermic insects, bumblebees could thus be expected to follow either trend. In this investigation, we studied body size of three bumblebee species over a large spatial area and investigated whether interspecific trends in body size correspond to differences in their distribution consistent with either Bergmann's or a converse Bergmann's rule. We examined the body size of queens, males and workers of the Bombus lucorum complex of cryptic bumblebee species from across the whole of Great Britain. We found interspecific differences in body size corresponding to Bergmann's rule: queens and males of the more northerly distributed, cool-adapted, species were largest. In contrast, the mean body size of the worker caste did not vary between the three species. These differences in body size may have evolved under selection pressures for thermoregulation or starvation resistance. We suggest that this case study in facultatively endothermic insects may help clarify the selection pressures governing Bergmann rule trends more generally.
Type: Journal Article
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: University of Stirling
Biological and Environmental Sciences
University of Sussex
Biological and Environmental Sciences

Files in This Item:
File Description SizeFormat 
Scriven et al 2016 Bergmann Rule PLOS ONE.pdf1.09 MBAdobe PDFUnder Embargo until 1/10/2017     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.