Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24377
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Bergmann’s Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species
Authors: Scriven, Jessica J
Whitehorn, Penelope R
Goulson, Dave
Tinsley, M C
Contact Email: mt18@stir.ac.uk
Issue Date: 14-Oct-2016
Publisher: Public Library of Science
Citation: Scriven JJ, Whitehorn PR, Goulson D & Tinsley MC (2016) Bergmann’s Body Size Rule Operates in Facultatively Endothermic Insects: Evidence from a Complex of Cryptic Bumblebee Species, PLoS ONE, 11 (10), Art. No.: e0163307.
Abstract: According to Bergmann's rule we expect species with larger body size to inhabit locations with a cooler climate, where they may be well adapted to conserve heat and resist starvation. This rule is generally applied to endotherms. In contrast, body size in ectothermic invertebrates has been suggested to follow the reverse ecogeographic trend: these converse Bergmann's patterns may be driven by the ecological constraints of shorter season length and lower food availability in cooler high latitude locations. Such patterns are particularly common in large insects due to their longer development times. As large and facultatively endothermic insects, bumblebees could thus be expected to follow either trend. In this investigation, we studied body size of three bumblebee species over a large spatial area and investigated whether interspecific trends in body size correspond to differences in their distribution consistent with either Bergmann's or a converse Bergmann's rule. We examined the body size of queens, males and workers of the Bombus lucorum complex of cryptic bumblebee species from across the whole of Great Britain. We found interspecific differences in body size corresponding to Bergmann's rule: queens and males of the more northerly distributed, cool-adapted, species were largest. In contrast, the mean body size of the worker caste did not vary between the three species. These differences in body size may have evolved under selection pressures for thermoregulation or starvation resistance. We suggest that this case study in facultatively endothermic insects may help clarify the selection pressures governing Bergmann rule trends more generally.
Type: Journal Article
URI: http://hdl.handle.net/1893/24377
DOI Link: http://dx.doi.org/10.1371/journal.pone.0163307
Rights: © 2016 Scriven et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Affiliation: University of Stirling
Biological and Environmental Sciences
University of Sussex
Biological and Environmental Sciences

Files in This Item:
File Description SizeFormat 
journal.pone.0163307.PDF1.13 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.