Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23699
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus
Authors: Saudargiene, Ausra
Cobb, Stuart R
Graham, Bruce
Contact Email: b.graham@cs.stir.ac.uk
Keywords: spike-timing-dependent plasticity
hippocampus
CA1
inhibitory interneurons
theta oscillations
Issue Date: Feb-2015
Publisher: Wiley-Blackwell
Citation: Saudargiene A, Cobb SR & Graham B (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus, Hippocampus, 25 (2), pp. 208-218.
Abstract: Cellular activity in the CA1 area of the hippocampus waxes and wanes at theta frequency (4–8 Hz) during exploratory behavior of rats. Perisomatic inhibition onto pyramidal cells tends to be strongest out of phase with pyramidal cell activity, whereas dendritic inhibition is strongest in phase with pyramidal cell activity. Synaptic plasticity also varies across the theta cycle, from strong long-term potentiation (LTP) to long-term depression (LTD), putatively corresponding to encoding and retrieval phases for information patterns encoded by pyramidal cell activity (Hasselmo et al. (2002a) Neural Comput 14:793–817). The mechanisms underpinning the phasic changes in plasticity are not clear, but it is likely that inhibition plays a role by affecting levels of electrical activity and calcium concentration at synapses. We explore the properties of synaptic plasticity during theta at Schaffer collateral synapses on CA1 pyramidal neurons and the influence of spatially and temporally targeted inhibition using a detailed multicompartmental model of the CA1 pyramidal neuron microcircuit and a phenomenological model of synaptic plasticity. The results suggest CA3-CA1 synapses are potentiated on one phase of theta due to high calcium levels provided by paired weak CA3 and layer III entorhinal cortex (EC) inputs even when somatic spiking is inhibited by perisomatic interneuron activity. Weak CA3 inputs alone induce lower calcium transients and result in depression of the CA3-CA1 synapses. These synapses are depressed if activated in phase with dendritic inhibition as strong CA3 inputs alone are not able to cause high calcium in this theta phase even though the CA1 pyramidal neuron shows somatic spiking. Dendritic inhibition acts as a switch that prevents LTP and promotes LTD during the retrieval phases of the theta rhythm in CA1 pyramidal cell. This may be important for not overly reinforcing recalled memories and in forgetting no longer relevant memories. © 2014 Wiley Periodicals, Inc.
Type: Journal Article
URI: http://hdl.handle.net/1893/23699
DOI Link: http://dx.doi.org/10.1002/hipo.22365
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: Vytautas Magnus University
University of Glasgow
Computing Science - CSM Dept

Files in This Item:
File Description SizeFormat 
Saudargiene_et_al-2015-Hippocampus.pdf596.52 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.