Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Submarine glacial landforms record Late Pleistocene ice-sheet dynamics, Inner Hebrides, Scotland
Authors: Dove, Dayton
Arosio, Riccardo
Finlayson, Andrew
Bradwell, Tom
Howe, John A
Contact Email:
Keywords: Quaternary glaciations
Submarine geomorphology
Glacial landforms
British–Irish Ice Sheet
Ice-sheet dynamics
Issue Date: Sep-2015
Publisher: Elsevier
Citation: Dove D, Arosio R, Finlayson A, Bradwell T & Howe JA (2015) Submarine glacial landforms record Late Pleistocene ice-sheet dynamics, Inner Hebrides, Scotland, Quaternary Science Reviews, 123, pp. 76-90.
Abstract: We use ∼7000km 2 of high-resolution swath bathymetry data to describe and map the submarine glacial geomorphology, and reconstruct Late Pleistocene ice sheet flow configurations and retreat dynamics within the Inner Hebrides, western Scotland. Frequently dominated by outcrops of structurally complex bedrock, the seabed also comprises numerous assemblages of well-preserved glacigenic landforms typical of grounded ice sheet flow and punctuated ice-margin retreat. The occurrence and character of the glacially streamlined landforms is controlled in part by the shallow geology and topography, however these factors alone cannot account for the location, orientation, and configuration of the observed landforms. We attribute the distribution of these elongate streamlined landforms to the onset zone of the former Hebrides Ice Stream (HIS) – part of a major ice stream system that drained 5–10% of the last British–Irish Ice Sheet (BIIS). We suggest this geomorphic signature represents the transition from slow ‘sheet flow’ to ‘streaming flow’ as ice accelerated out from an environment characterized by numerous bedrock obstacles (e.g. islands, headlands), towards the smooth, sediment dominated shelf. The majority of streamlined landforms associated with the HIS indicate ice sheet flow to the southwest, with regional-scale topography clearly playing a major role in governing the configuration of flow. During maximal glacial conditions (∼29–23ka) we infer that the HIS merged with the North Channel-Malin Shelf Ice Stream to form a composite ice stream system that ultimately reached the continental shelf edge at the Barra-Donegal Trough-Mouth Fan. Taken collectively however, the pattern of landforms now preserved at seabed (e.g. convergent flow indicators, cross-cutting flow sets) is more indicative of a thinning ice mass, undergoing reorganization during overall ice sheet retreat (during latter stages of Late Weischselian glaciation). Suites of moraines overprinting the streamlined landforms suggest partial stabilization of the HIS prior to the ice sheet retreating to more isolated, topographically confined troughs and basins. Retreat from the shelf towards, and back into the Inner Hebrides may have been rapid due the prevalence of overdeepened troughs. Within the near-shore fjord-like troughs and deeps, basin-aligned streamlined landforms indicate the subsequent flow of thinner topographically partitioned ice masses, and overprinted moraines record further ice margin retreat, potentially along tide-water margins. This work provides the first geomorphological constraints for this large marine-influenced sector of the former BIIS. We also shed new light on the glacial geomorphic record found at the transition from terrestrial to marine continental-shelf settings, and examine the interplay between substrate geology, bed topography/bathymetry, and grounding-line positions – relationships which are important for characterizing contemporary marine ice sheet margins.
Type: Journal Article
DOI Link:
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: British Geological Survey
Scottish Association for Marine Science
British Geological Survey
Biological and Environmental Sciences
Scottish Marine Institute

Files in This Item:
File Description SizeFormat 
Dove et al_Quat Sci Rev_2015.pdf7.62 MBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.