Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/21652
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Chytrid fungus infections in laboratory and introduced Xenopus laevis populations: assessing the risks for U.K. native amphibians
Author(s): Tinsley, Richard C
Coxhead, Peter G
Stott, Lucy C
Tinsley, M C
Piccinni, Maya Z
Guille, Matthew J
Contact Email: mt18@stir.ac.uk
Keywords: African clawed frog
Chytrid fungus (Bd)
Emerging infectious disease (EID)
Global spread of pathogens
Invasive species
Threats to native species
Issue Date: Apr-2015
Date Deposited: 13-Apr-2015
Citation: Tinsley RC, Coxhead PG, Stott LC, Tinsley MC, Piccinni MZ & Guille MJ (2015) Chytrid fungus infections in laboratory and introduced Xenopus laevis populations: assessing the risks for U.K. native amphibians. Biological Conservation, 184, pp. 380-388. https://doi.org/10.1016/j.biocon.2015.01.034
Abstract: The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigated transfer of infection into co-occurring native amphibian faunas. A survey of 27 U.K. institutions maintaining X. laevis for research showed that most laboratories have low-level infection, a risk for native species if animals are released into the wild. RT-PCR assays showed Bd in two introduced U.K. populations of X. laevis, in Wales and Lincolnshire. Laboratory and field studies demonstrated that infection levels increase with stress, especially low temperature. In the U.K., native amphibians may be exposed to intense transmission in spring when they enter ponds to spawn alongside X. laevis that have cold-elevated Bd infections. Exposure to cross-infection has probably been recurrent since the introduction of X. laevis, >20years in Lincolnshire and 50years in Wales. These sites provide an important test for assessing the impact of X. laevis on Bd spread. However, RT-PCR assays on 174 native amphibians (Bufo, Rana, Lissotriton and Triturus spp.), sympatric with the Bd-infected introduced populations, showed no foci of self-sustaining Bd transmission associated with X. laevis. The abundance of these native amphibians suggested no significant negative population-level effect after the decades of co-occurrence.
DOI Link: 10.1016/j.biocon.2015.01.034
Rights: Copyright 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Tinsley_Biological Conservation_2015.pdfFulltext - Published Version622.74 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.