Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20749
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Effective learning hyper-heuristics for the course timetabling problem
Author(s): Soria-Alcaraz, Jorge A
Ochoa, Gabriela
Swan, Jerry
Carpio, Martin
Puga, Hector
Burke, Edmund
Contact Email: gabriela.ochoa@stir.ac.uk
Keywords: Timetabling
Hyper-heuristics
Heuristics
Metaheuristics
Combinatorial optimization
Issue Date: Oct-2014
Date Deposited: 29-Jul-2014
Citation: Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H & Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem. European Journal of Operational Research, 238 (1), pp. 77-86. https://doi.org/10.1016/j.ejor.2014.03.046
Abstract: Course timetabling is an important and recurring administrative activity in most educational institutions. This article combines a general modeling methodology with effective learning hyper-heuristics to solve this problem. The proposed hyper-heuristics are based on an iterated local search procedure that autonomously combines a set of move operators. Two types of learning for operator selection are contrasted: a static (offline) approach, with a clear distinction between training and execution phases; and a dynamic approach that learns on the fly. The resulting algorithms are tested over the set of real-world instances collected by the first and second International Timetabling competitions. The dynamic scheme statistically outperforms the static counterpart, and produces competitive results when compared to the state-of-the-art, even producing a new best-known solution. Importantly, our study illustrates that algorithms with increased autonomy and generality can outperform human designed problem-specific algorithms.
DOI Link: 10.1016/j.ejor.2014.03.046
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H & Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem, European Journal of Operational Research, 238 (1), pp. 77-86. DOI: 10.1016/j.ejor.2014.03.046 © 2015, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
hhcttp.pdfFulltext - Accepted Version953.71 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.