Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/15781
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Improving the scalability of rule-based evolutionary learning
Author(s): Bacardit, Jaume
Burke, Edmund
Krasnogor, Natalio
Contact Email: e.k.burke@stir.ac.uk
Keywords: Evolutionary algorithms
Evolutionary learning
Learning classifier systems
Rule induction
Bioinformatics
Protein structure prediction
Issue Date: Mar-2009
Date Deposited: 4-Jul-2013
Citation: Bacardit J, Burke E & Krasnogor N (2009) Improving the scalability of rule-based evolutionary learning. Memetic Computing, 1 (1), pp. 55-67. https://doi.org/10.1007/s12293-008-0005-4
Abstract: Evolutionary learning techniques are comparable in accuracy with other learning methods such as Bayesian Learning, SVM, etc. These techniques often produce more interpretable knowledge than, e.g. SVM; however, efficiency is a significant drawback. This paper presents a new representation motivated by our observations that Bioinformatics and Systems Biology often give rise to very large-scale datasets that are noisy, ambiguous and usually described by a large number of attributes. The crucial observation is that, in the most successful rules obtained for such datasets, only a few key attributes (from the large number of available ones) are expressed in a rule, hence automatically discovering these few key attributes and only keeping track of them contributes to a substantial speed up by avoiding useless match operations with irrelevant attributes. Thus, in effective terms this procedure is performing a fine-grained feature selection at a rule-wise level, as the key attributes may be different for each learned rule. The representation we propose has been tested within the BioHEL machine learning system, and the experiments performed show that not only the representation has competent learning performance, but that it also manages to reduce considerably the system run-time. That is, the proposed representation is up to 2-3 times faster than state-of-the-art evolutionary learning representations designed specifically for efficiency purposes.
DOI Link: 10.1007/s12293-008-0005-4
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Improving the scalability of rule-based evolutionary learning.pdfFulltext - Published Version506.22 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.