http://hdl.handle.net/1893/15764
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Peer Review Status: | Refereed |
Title: | A pattern recognition based intelligent search method and two assignment problem case studies |
Author(s): | Li, Jingpeng Burke, Edmund Qu, Rong |
Contact Email: | e.k.burke@stir.ac.uk |
Keywords: | Neural networks Assignment problem Personnel scheduling Exam timetabling Search method |
Issue Date: | Mar-2012 |
Date Deposited: | 3-Jul-2013 |
Citation: | Li J, Burke E & Qu R (2012) A pattern recognition based intelligent search method and two assignment problem case studies. Applied Intelligence, 36 (2), pp. 442-453. https://doi.org/10.1007/s10489-010-0270-z |
Abstract: | Numerous papers based on various search methods across a wide variety of applications have appeared in the literature over recent years. Most of these methods apply the following same approach to address the problems at hand: at each iteration of the search, they first apply their search methods to generate new solutions, then they calculate the objective values (or costs) by taking some constraints into account, and finally they use some strategies to determine the acceptance or rejection of these solutions based upon the calculated objective values. However, the premise of this paper is that calculating the exact objective value of every resulting solution is not a must, particularly for highly constrained problems where such a calculation is costly and the feasible regions are small and disconnected. Furthermore, we believe that for newly-generated solutions, evaluating the quality purely by their objective values is sometimes not the most efficient approach. In many combinatorial problems, there are poor-cost solutions where possibly just one component is misplaced and all others work well. Although these poor-cost solutions can be the intermediate states towards the search of a high quality solution, any cost-oriented criteria for solution acceptance would deem them as inferior and consequently probably suggest a rejection. To address the above issues, we propose a pattern recognition-based framework with the target of designing more intelligent and more flexible search systems. The role of pattern recognition is to classify the quality of resulting solutions, based on the solution structure rather than the solution cost. Hence, the general contributions of this work are in the line of "insights" and recommendations. Two real-world cases of the assignment problem, i.e. the hospital personnel scheduling and educational timetabling, are used as the case studies. For each case, we apply neural networks as the tool for pattern recognition. In addition, we present our theoretical and experimental results in terms of runtime speedup. |
DOI Link: | 10.1007/s10489-010-0270-z |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
A pattern recognition based intelligent search method and two assignment problem case studies.pdf | Fulltext - Published Version | 843.55 kB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.