Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/15759
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: A more realistic approach for airport ground movement optimisation with stand holding
Authors: Ravizza, Stefan
Atkin, Jason A D
Burke, Edmund
Contact Email: e.k.burke@stir.ac.uk
Keywords: Ground movement optimisation
Airport operations
Routing
Real world scheduling
Decision support system
Issue Date: Oct-2014
Publisher: Springer
Citation: Ravizza S, Atkin JAD & Burke E (2014) A more realistic approach for airport ground movement optimisation with stand holding, Journal of Scheduling, 17 (5), pp. 507-520.
Abstract: In addition to having to handle constantly increasing numbers of aircraft, modern airports also have to address a wide range of environmental regulations and requirements. As airports work closer and closer to their maximal possible capacity, the operations problems that need to be solved become more and more complex. This increasing level of complexity leads to a situation where the introduction of advanced decision support systems becomes more and more attractive. Such systems have the potential to improve efficient airside operations and to mitigate against the environmental impact of those operations. This paper addresses the problem of moving aircraft from one location within an airport to another as efficiently as possible in terms of time and fuel spent. The problem is often called the ground movement problem and the movements are usually from gate/stands to a runway or vice-versa. We introduce a new sequential graph based algorithm to address this problem. This approach has several advantages over previous approaches. It increases the realism of the modelling and it draws upon a recent methodology to more accurately estimate taxi times. The algorithm aims to absorb as much waiting time for delay as possible at the stand (with engines off) rather than out on the taxiways (with engines running). The impact of successfully achieving this aim is to reduce the environmental pollution. This approach has been tested using data from a European hub airport and it has demonstrated very promising results. We compare the performance of the algorithm against a lower bound on the taxi time and the limits to the amount of waiting time that can be absorbed at stand.
Type: Journal Article
URI: http://hdl.handle.net/1893/15759
DOI Link: http://dx.doi.org/10.1007/s10951-013-0323-3
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: University of Nottingham
University of Nottingham
Deputy Principal's Office

Files in This Item:
File Description SizeFormat 
journal of scheduling.pdf825.22 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.