Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/10331
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Peer Review Status: | Refereed |
Title: | Stability conditions for the non-linear McKendrick equations |
Author(s): | Farkas, Jozsef Zoltan |
Contact Email: | jozsef.farkas@stir.ac.uk |
Keywords: | age-structured population dynamics stability |
Issue Date: | 15-Sep-2004 |
Date Deposited: | 17-Dec-2012 |
Citation: | Farkas JZ (2004) Stability conditions for the non-linear McKendrick equations. Applied Mathematics and Computation, 156 (3), pp. 771-777. https://doi.org/10.1016/j.amc.2003.06.019 |
Abstract: | Non-linear McKendrick equation with age-dependent mortality and fertility is considered. The author [Appl. Math. Comput. 131 (1) (2002) 107] deduced the characteristic equation whose roots determine the stability. We are able to give sufficient conditions for the stability of the stationary solutions of the system in some cases. |
DOI Link: | 10.1016/j.amc.2003.06.019 |
Rights: | Published in Applied Mathematics and Computation by Elsevier; Elsevier believes that individual authors should be able to distribute their accepted author manuscripts for their personal voluntary needs and interests, e.g. posting to their websites or their institution’s repository, e-mailing to colleagues. The Elsevier Policy is as follows: Authors retain the right to use the accepted author manuscript for personal use, internal institutional use and for permitted scholarly posting provided that these are not for purposes of commercial use or systematic distribution. An “accepted author manuscript” is the author’s version of the manuscript of an article that has been accepted for publication and which may include any author-incorporated changes suggested through the processes of submission processing, peer review, and editor-author communications. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
biomatekpubl.pdf | Fulltext - Accepted Version | 353.42 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.