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WorldSeasons: a seasonal 
classification system interpolating 
biome classifications within 
the year for better temporal 
aggregation in climate science
Chris Littleboy   ✉, Jens-arne Subke, Nils Bunnefeld & Isabel L. Jones  

We present a seasonal classification system to improve the temporal framing of comparative scientific 
analysis. Research often uses yearly aggregates to understand inherently seasonal phenomena like 
harvests, monsoons, and droughts. This obscures important trends across time and differences through 
space by including redundant data. Our classification system allows for a more targeted approach. 
We split global land into four principal climate zones: desert, arctic and high montane, tropical, and 
temperate. A cluster analysis with zone-specific variables and weighting splits each month of the year 
into discrete seasons based on the monthly climate. We expect the data will be able to answer global 
comparative analysis questions like: are global winters less icy than before? Are wildfires more frequent 
now in the dry season? How severe are monsoon season flooding events? This is a natural extension 
of the historical concept of biomes, made possible by recent advances in climate data availability and 
artificial intelligence.

Background & Summary
The concept of biomes has been developed and used widely over the past 140 years, including contributions 
from Köppen (1884), Holdridge (1947), Whittaker (1962) and Olson-Dinerstein (1998) among others1–5. The 
availability of high-resolution monthly climate data in the past 5 years has improved the spatial resolution of 
biome classifications6. Biomes ensure that the spatial frame for comparative analysis is appropriate and data 
products such as the high-resolution Köppen-Geiger grid6, and the ecoregion polygons7, are cited by thousands 
of applied analyses.

A global seasonal classification system is a natural extension of existing biome classification systems. In the 
same way that there is value in an empirically derived classification system for biomes, there is a value in empir-
ically derived classification systems for seasons. Temperature increases and extreme weather frequency are most 
commonly reported in yearly composites8. Yearly composite satellite data are used to understand large scale 
Land Use and Land Cover (LULC) change9–11. Many phenomena important to the environment and economy 
are fundamentally seasonal in nature, for example snow melt, monsoons, and harvests12–14. For research which 
compares seasonal phenomena, annual aggregates are an inappropriate temporal frame. Some trends can be 
captured using annual aggregate data, but these can be diluted by the inclusion of redundant data – information 
included in the analytical framing which is not relevant to the object of study. Just as biome classifications help 
define the spatial frame for analysis, season classifications can help define the temporal frame for analysis.

There are formal definitions of seasons. Meteorological seasons divide the year in temperate areas into four 
equal three-month periods. Astronomical seasons similarly divide temperate areas into four almost equal 
periods based on solstices and equinoxes. But variation in climate and vegetation, which these classifications 
purportedly measure, do not come in corresponding, equal intervals; distinct periods of vegetation growth 
or climate activity that signify a season can be shorter or longer than three months15. Furthermore, neither 
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meteorological, nor astronomical seasons accurately describe yearly change in tropics, deserts, or arctic and high 
montane regions, where there are fewer than four distinct climate windows within an annual cycle15–17. Analysts 
wishing to incorporate intra-annual change are therefore forced to make a difficult choice: to base results on 
meteorological or astronomical seasons (which do not appropriately capture intra-annual variation and are not 
appropriate for non-temperate areas), or study change in a small area where seasons can be defined in a locally 
specific manner13.

We present an alternative approach which avoids inappropriate temporal aggregation in studies of climate 
change. The method outlined harnesses recent advances in the technology and availability of machine learning 
optimization and Large Language Models (LLMs)18–20. Our new seasonal classification groups months into clus-
ters (i.e., seasons) with similar climate and function at high resolution for every location across the globe. Our 
classification has potential applications for a wide range of analyses.

Methods
Seasons are generated with a two-tier algorithm which first sorts each location to a climate zone (temperate, 
tropical, desert, or arctic and high montane) and second sorts each month in that location into a zone-specific 
season using monthly seasonality data. Underlying data on climate are from three sources. First, WorldClim 
Version 2, which publishes global raster data on monthly climate21. This represents long-term (1970–2000) 
historical average values for each month. Specifically, we use a temperature variable (the mid-point between 
monthly minimums and monthly maximum temperature), precipitation, and solar radiation. Second, the 
European Space Agency’s Climate Change Initiative published a seasonality product of weekly data on vegeta-
tion greenness (assessed by the Normalized Difference Vegetation Index, NDVI)22. This represents long term 
(1998–2012) historical values for NDVI each week. This data was temporally aggregated to monthly averages, 
and spatially resampled to the same grid as the WorldClim raster using the terra package in R23. And third, we 
use the Global Aridity Index24. The Aridity Index is a ratio of precipitation to Potential EvapoTranspiration 
(PET), where PET measures the evapotranspiration of a reference crop (well-watered grass with a height of 
12 cm, fixed surface resistance of 70 seconds per meter, and an albedo of 0.23).

We also compute lag variables to determine the size and direction of monthly changes in NDVI and tem-
perature. For example, the January temperature lag variable would be the temperature in January minus the 
temperature in December. The sign of these lag variables helps determine the difference between, for example, 
Spring and Autumn25,26.

We balanced the need to retain information about complex climate changes, while making the approach as 
simple as possible – with the fewest possible climate zones and simplest naming conventions for seasons27. The 
process has several core principles:

•	 Seasons are discrete groups of the year based on complex continuous local changes in weather and the result-
ing changes in vegetation.

•	 Temperate areas have 4-season systems (“Winter”, “Spring”, “Summer” and “Autumn”) and lack the extremes 
present in other climate zones.

•	 The tropics typically have 2-season systems (“Dry” and “Wet”) and have high rainfall, low intra-year temper-
ature variation, and a minimum yearly average temperature.

•	 Arctic and high montane regions have two seasons (“Winter” and “Summer”) and have year-long low 
temperatures.

•	 Deserts have two seasons (“Cooler” and “Hotter”) and are defined by high aridity (the ratio of rainfall and 
Potential Evapotranspiration) and low rainfall.

•	 Apart from in the tropics, seasons must be “temporally contiguous”: once a season ends it cannot reappear in 
the same annual cycle.

•	 In the tropics there can be multiple “Wet” seasons due to the Inter-Tropical Convergence Zone (ITCZ)28.

Determining the climate zone. Every location is grouped into one out of four climate zones: arctic and 
high montane, desert, tropical, and temperate (Fig. 1). The type of climate is determined by several fixed condi-
tions. Arctic climates do not fit into the 4-season systems of temperate climates as Spring and Autumn are too 
short. Instead, we consider a 2-season system of Winter and Summer as more exact, as in recent studies of polar 
climates29. These climates are defined as areas where the mean minimum temperature of each month in the year 
never exceeds 10 degrees Celsius, following the approach in the Koppen-Geiger system6. This means that a frost 
can occur on any day of the year, and the growing season is very short. Arctic climates are grouped together with 
high-montane climates because of the similarities in ecosystem function of these areas30.

Deserts are arid and include cold as well as hot deserts24. While deserts can be distinguished from other climate 
zones using aridity, seasons within desert climates are mainly defined by changes in temperature31. This is particu-
larly the case for the arctic dry tundra, Tibetan plateau, and the Gobi, which have arid environments with extreme 
intra-annual temperature changes32. Most deserts, such as the Sahara, have a more consistent extreme heat.

Tropical regions are determined by three thresholds: first, the intra-annual difference in rainfall (difference 
between the rainiest month and driest month). Second, the intra-annual difference in temperature (difference 
between the hottest and coldest month). These two thresholds are parameters set during optimization. Third, a 
threshold of temperature was used to exclude areas which are cold year-round, but have little seasonal temper-
ature variation, which is possible due to ocean currents33. Where the difference between the wettest and driest 
months is high, the difference between the hottest and coldest month is low, and the average temperature is 
consistently high, areas are considered to be tropical.

The remaining areas are not characterized by such extremes and are designated as temperate.
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Cluster analysis. We use a k-means cluster analysis to determine monthly seasons for each location: a 5-arc 
minute grid cell. The process is the same for locations in each climate zone, but the resulting seasons depend on 
the underlying climate data. For arctic and high montane climates, we use an un-weighted 2D cluster analysis 
(temperature, solar radiation) with two centers (Summer, Winter). For desert climates, we use an un-weighted 
2D cluster analysis (temperature, aridity) with two centers (Hotter, Cooler). Our variables selection and weighting 
strategy was aimed to capture key seasonal trends in different climate zones with the minimum possible input 
data. In un-weighted cluster analysis each variable has equal importance. In deserts, and in arctic and and high 
montane climates, unweighted cluster analysis is appropriate because input variables are positively correlated and 
correspond with stark seasonal differences. One exception is equatorial deserts where the temperature differences 
between “Cooler” and “Hotter” are minimal, and seasonal analysis of change is less important. Weighting is nec-
essary for the tropical and temperate climate zones. For temperate climates, we use a weighted 4D cluster analysis 
(rainfall, temperature, NDVI lag and temperature lag) with four centers (Winter, Spring, Summer, Autumn). For 
tropical climates, we use a weighted 3D cluster analysis (rainfall, temperature, NDVI lag) with two centers (Wet, 
Dry). The temperature lag was excluded from tropical areas because the direction of month-to-month tempera-
ture change is often not a continuous function in the tropics.

We weight the variables because some climate variables are dominant in distinguishing seasons in specific 
locations. Weighting ensures that these key variables were more (or less) important in determining the seasonal 
designation for each month. The strategy to weight the variables involved two processes. First, we generated ref-
erence data of month-season pairs for global cities. Data with a local understanding of how the seasons change 
through the year, on a global scale, did not already exist. We generated this using the Large Language Model 
ChatGPT 3.534,35. Second, we optimized our algorithm to produce seasonal designations from the raw climate 
data which matched seasonal designations in the reference data as closely as possible.

Reference data. We gathered point locations for cities throughout the world using naturalearth data36. 
To ensure appropriate geographic representation, we selected 10 cities at random in each country. For each 
city-country pair we ran the prompt in ChatGPT:

Fig. 1 Schematic of the two-stage process to determine climate zones and seasons.
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 “What is the season for each month in [city-country]. Do not include any introduction. Respond in the 
format: January,xxx, February,xxx, March,xxx, April,xxx, May,xxx, June,xxx, July,xxx, August,xxx, 
September,xxx, October,xxx, November,xxx, December,xxx; Do not include line breaks.”

The raw output of this shows the heterogeneity in local definitions of seasons. Especially in the tropics, there 
were many different names for “Dry” season and “Wet” season.

Seasons in Tropical areas relate to volume of rainfall, and we forced a simpler 2-season category on tropical 
areas (Fig. 2). Often, due to the ICTZ, there are two separate “Wet” seasons during the year which can have 
different names. As our approach aimed for simplification, we adjusted labels to either “dry” or “wet” (Table 1).

K-means was chosen over other clustering algorithms because of its speed and because it is a well-established 
algorithm. Since we have pre-determined the number of discrete seasons in each climate zone, the typical 
downside of K-means clustering – that analysts need to pre-define the number of clusters in the data – becomes 
a strength37. In order that each variable has equal importance irrespective of the reported unit (mm of rain, 
degrees Celsius), variables are normalized by subtracting the mean and dividing by the standard deviation. In 
two of the climate zones – arctic and high montane and deserts – variables are not weighted. This is because we 
only include two variables in the cluster analysis for these climate zones – in the desert climate zone, variables 
are temperature and aridity, and in arctic and high montane climate zone, variables are temperature and solar 
radiation. In both cases these are correlated and weighting the variables is not important for cluster selection.

In tropical and temperate regions weights are more important to achieve seasons which align with current 
understanding. While tropical seasons are defined more by seasonal differences in rainfall, temperate seasons 
are defined more by temperature changes and the resulting changes in growing conditions. As such, certain 

Fig. 2 Seasonal simplification by recategorizing tropical seasons to Wet and Dry. The upper map shows the 
number of seasons in each city before cleaning the ChatGPT data. The lower map shows the number of seasons 
in the cleaned data.
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climate variables are more important than others in such conditions. These variables are weighted higher, and 
the weights were determined using irace – an R package for automatic algorithm tuning. The parameter space – 9 
variables of bounded real numbers – is sufficiently large to not allow for an exhaustive search approach to deter-
mining weights38. All parameters in the optimization algorithm are bounded real numbers. The intra-annual 
temperature and precipitation difference thresholds for determining whether a location is tropical or temperate 
were bound between 3 and 14 degrees Celsius, and 80 mm and 130 mm of precipitation. Introducing these 
bounds was done to help minimize computation time following several initial runs of the optimization algo-
rithm which returned values within this range. Both sets of bounds were deliberately flexible – large enough to 
allow for smaller and larger than expected values from the optimization search, but small enough to help the 
optimization achieve convergence. In addition, all weights were bound between 0.25 and 4 so that a variable 
could range from a quarter as important to four times as important as an unweighted variable in determining 
the cluster. These bounds were set to provide balance and prevent any one variable becoming too dominant in 
the determination of seasons. which can lead to chosen weights which work well in many contexts and poorly 
in others.

We defined a simple error function where 1 was added to the error for each month that the cluster algorithm 
produced a season different from the ChatGPT season. If the algorithm decided that a temperate area (as deter-
mined by ChatGPT) was tropical, the error was capped at 6. This was set to be a high penalty for categorizing 
a tropical city in the reference data as a temperate city in the algorithm. All settings were calibrated by visual 
assessment of the seasonal classification performance and the authors’ knowledge of certain geographies. The 
optimization process aims to avoid such subjectivity in the actual choice of weights.

Gpt output Cleaned label Frequency

Dry Season dry 468

Hot and Dry dry 30

Harmattan dry 22

Warm and Dry dry 10

Hot dry 10

Sunny and Dry dry 7

Cool and Dry dry 4

Rainy wet 306

Wet Season wet 259

Rainy Season wet 193

Wet-Season wet 20

Warm and Humid wet 10

Hot and Wet wet 10

Hot and Humid wet 10

Short Rainy Season wet 8

Rain wet 6

Humid wet 5

Warm and Wet wet 5

Long Rainy Season wet 4

Table 1. Recoding of seasons from raw ChatGPT data to the clean and simple version.

Variable Value

Precipitation (mm) 81.972

Temperature (°C) 7.52

Table 2. Thresholds to determine whether a grid cell is considered temperate or tropical. Differences are 
maximum monthly values minus minimum monthly values for each climate variable. Values above the 
precipitation difference threshold and below the temperature difference threshold are tropical.

Variable Value

Temperature 3.521

Precipitation lag 3.237

Temperature lag 2.031

NDVI lag 0.312

Table 3. Optimized weights for temperate areas. In the k-means cluster analysis, climate variables in temperate 
areas are weighted with these values to determine the season in each month.

https://doi.org/10.1038/s41597-024-03732-z
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Fig. 3 The twelve panels show the results of the seasonal classification for each month.

Error Frequency

0 101

1 14

2 38

3 42

4 21

5 6

6 3

7 4

8 1

9 1

10 2

12 12

Table 5. Frequency of error scores for the final chosen parameter configuration.

Variable Value

Temperature 3.958

Precipitation lag 3.72

NDVI lag 1.713

Table 4. Optimized weights for tropical areas. In the k-means cluster analysis climate variables in tropical areas 
are weighted with these values to determine the season in each month. The temperature lag variable is excluded 
because the direction of month-on-month temperature changes is not a continuous function like in temperate 
areas.
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The optimization trained on 70% of the cities in the ChatGPT reference data – totaling 573 locations. We then 
tested the performance of five “elite” configurations on the remainder of the reference data – totaling 245 cities. 
Final parameters were selected from the training set with the lowest mean error on test data (Tables 2, 3, and 4).

The mean error of the final optimized parameters was 2.3, meaning that for each location there were 2.3 
months of the year with different seasonal designations between our algorithm and the reference data.

Table 5 shows the tabulated errors which illustrate a skew: our algorithm typically either matched the 
ChatGPT data completely or did not match at all. All cities where none of the months matched were in the 
tropics and were typically coastal or had a higher elevation. This is due mainly to seasons which were inaccu-
rately assigned to these unique climates in the ChatGPT reference data. Of the cities where the months partially 
matched, this was typically due to an offset effect. For example, our algorithm often considered all seasons of the 
year to begin one month later.

Overall, we consider this mean error to be sufficiently low to trust in the weighting process. No fixed set of 
parameters can eliminate errors between the ChatGPT reference data and predicted seasonal classifications. By 
having a fixed set of parameters we ensure global consistency in the approach to determine seasons. This is a 
core purpose for this data. And by choosing fixed parameters that minimize classification errors with respect 
to the ChatGPT dataset, we ensure that our seasonal classifications match local understandings of seasons as 
closely as possible.

post processing. Seasons are collected for each grid cell using a cluster analysis with the weights determined 
by the optimization process. Where a month does not clearly belong to a specific season, perhaps towards the end 
of winter and the beginning of spring, the unprocessed raster can show alternating seasonal designations within 
a small region. The focal function in the terra R package helps to smooth the transitions between landscapes. 
Finally, we reproject the data to the pseudo cylindrical Equal Earth projection39. This ensures that areas for each 
grid cell are equivalent globally.

Data Records
Our data is publicly available for download40. For every 8 km x 8 km cell on land we have a 2 × 12 matrix showing 
month–season pairs, as shown in Fig. 3. The file is available to download in .tif format, with twelve layers. It is 
also available as a .txt file, with four columns: x, y (representing longitude and latitude in the Equal Area pro-
jection), month, and season. We also include our Climate Zone data, available as a single layer .tif file, as shown 
in Fig. 4.

Fig. 4 Output of applying thresholds to each grid cell of the underlying climate data to determine the four 
Climate Zones.
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All code and data used to produce the final file is either freely available within this submission or available for 
download from the original publishers. We are releasing the data with a CC-BY license.

Technical Validation
Validation of the model was an integral part of the development of the data through the optimization of weights 
and thresholds using the ChatGPT reference data. Due to the subjective nature of the concept being quantified, 
it is difficult to validate beyond this41. As with biome classifications, the best approach will reflect the context in 
which the classification is used42. We anticipate that future versions of the model may be necessary to adapt to 
different use-cases.

Code availability
All code used to produce and visualize the data is available. The code is fully documented. It relies on several 
R packages19,23,35,43–45. Our ChatGPT reference data cannot be reproduced due to the nature of large language 
models. Nevertheless, we include the code to produce and clean the data, as well as our final reference data in .csv 
format. Likewise, the analysis to find optimal weights can produce different results at each running. We include 
the code to run this optimization, though there are some system-specific setup requirements. The processing 
required a machine with large RAM capacity. Please feel free to contact the corresponding author if there are any 
questions regarding the code.
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