
1

Evolutionary Computation and Explainable AI: A
Roadmap to Transparent Intelligent Systems

Anonymous Authors

Abstract—AI methods are finding an increasing number of
applications, but their often black-box nature has raised concerns
about accountability and trust. The field of explainable artificial
intelligence (XAI) has emerged in response to the need for human
understanding of AI models. Evolutionary computation (EC), as a
family of powerful optimization and learning tools, has significant
potential to contribute to XAI. In this paper, we provide an
introduction to XAI and review various techniques in current
use for explaining machine learning (ML) models. We then focus
on how EC can be used in XAI, and review some XAI approaches
which incorporate EC techniques. Additionally, we discuss the
application of XAI principles within EC itself, examining how
these principles can shed some light on the behavior and outcomes
of EC algorithms in general, on the (automatic) configuration
of these algorithms, and on the underlying problem landscapes
that these algorithms optimize. Finally, we discuss some open
challenges in XAI and opportunities for future research in this
field using EC. Our aim is to demonstrate that EC is well-
suited for addressing current problems in explainability and to
encourage further exploration of these methods to contribute
to the development of more transparent and trustworthy ML
models and EC algorithms.

Index Terms—Explainability, Interpretability, Evolutionary
Computation, Machine Learning.

I. INTRODUCTION

The use of AI has become increasingly widespread, and
with it, there is a growing need to understand the reasoning
behind the outputs and decisions it produces. Although AI
methods can learn complex relationships in data or provide
solutions to challenging problems, decisions based on the
outputs of models can have real-world impacts. For example,
the use of predictive models in applications such as medicine,
hiring, and the justice system has raised concerns about the
fairness and transparency of such models; the increasing use
of large language models in commercial products has made
avoiding harmful content ever more important; and the adop-
tion of black-box optimization in areas such as scheduling and
logistics [1] requires the trust of the users who are accountable
if things go wrong. Therefore, it is essential not only to
improve the models we create but also to understand and
explain what led to their decisions. There are active lines of
research into improving the fairness and safety of models, but
in this survey, we focus on the latter problem: understanding,
explaining, and increasing transparency in AI systems.

Recent advances in AI have drawn heavily on “black-box”
approaches. Deep learning, ensemble models, and stochastic
optimization algorithms may have clearly defined structures,

Manuscript received June 8, 2024.

but the processes leading to the decisions they make are
often sufficiently complex to be opaque to humans. The field
of explainable artificial intelligence (XAI) has emerged in
response to this need [2]. XAI is an umbrella term that
covers research on methods designed to provide human-
understandable explanations of the decisions made/knowledge
captured by AI models.

XAI research aims to develop methods to explain the deci-
sions, predictions, or recommendations made by AI processes
in terms that humans can understand. These explanations
foster trust and improve a system’s robustness by highlighting
potential biases and failures. They also provide researchers
with insights to better understand, validate, and debug the
system effectively. Beyond this, they also play a pivotal role
in ensuring regulatory compliance and improving human-
machine interactions, allowing users a better understanding of
when they can rely on a model’s conclusions.

In the context of evolutionary computation (EC), in our
view, two directions associated with XAI emerge. First, the
application of XAI principles to decision-making within EC,
and second, the use of EC to enhance explainability within
ML. A body of work is developing in both areas and is
gathering pace – in part due to events such as a workshop on
EC and XAI held at GECCO in 2022 and 2023. The aim of
this paper is to provide a critical review of research conducted
at the intersection of EC and XAI. We provide a taxonomy
of methods and highlight potential avenues of future work,
expanding on the initial directions proposed in [3] and [4].

The remainder of this paper provides a discussion around
these themes. First, in Section II, we introduce foundational
concepts in XAI such as the nature of explanations and the
distinctions between interpretability and explainability, and
provide motivation for strengthening the link between XAI
and EC. Then, in Section III, we discuss how EC can be used
for XAI. while in Section IV we discuss how XAI can be
applied to EC. We then discuss the ongoing challenges and
potential opportunities in Section V. Lastly, we provide final
thoughts and conclusions in Section VI.

II. EXPLAINABLE AI

At its core, XAI aims to provide methods and tools for
humans to understand the decision-making processes of AI
systems. These tools provide insights in the form of expla-
nations, shedding light on how such systems produce their
outputs and solutions, highlighting significant features and
interactions that influence the results, and revealing potential

0000–0000/00$00.00 © 2024 IEEE

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Cite as: Zhou R, Bacardit J, Brownlee A, Cagnoni S, Fyvie M, Iacca G, McCall J, van Stein N, Walker D & Hu T (2024) Evolutionary Computation and
Explainable AI: A Roadmap to Transparent Intelligent Systems. IEEE Transactions on Evolutionary Computation.

2

issues in their workings. Even though such a system may
be too complex for a human to interpret directly, it can be
considered explainable if it can be understood.

Explainability is important for several reasons. Perhaps the
most crucial is trust. Trust in the workings of an AI algorithm
directly influences users’ willingness to adopt and adhere to
the results and ensures that users not only accept but also
can confidently and justifiably rely on the answers these
models provide. In the case of optimization, this may mean
convincing users that they can trust the solutions by knowing
what makes that solution better than anything (or at least
something) else, which might be seen as synonymous with
knowing why the solution was chosen. In the case of a model
created by ML, it may mean allowing users to understand
the decisions that a model makes leading to the final output.
It is also important to consider that such an explanation will
likely be important in the future to provide an audit trail for the
decisions underpinning an implemented solution, as legislation
regulating the use of AI increases.

Extending this theme is that of validity. EC methods (and
optimizers in general) only optimize the function they have
been given, and ML methods learn from the data they are
provided. Explaining why a solution was chosen or how a
prediction was made might help us know if it solves the
actual problem, or if it just exploits an error or loophole in the
problem’s definition or a spurious relationship in the data. This
not only can lead to surprising or even amusing results [5],
but can also simply yield frustratingly incorrect solutions to a
problem.

EC is stochastic and, as a result, some noise in the generated
solutions is likely if not unavoidable. Different runs can
produce similar solutions of equal quality but solutions can
also feature artifacts that have no impact on their quality. Thus,
another fundamental question is whether we can explain which
characteristics of the solution are crucial: its malleability. In
other words: Which variables could be refined or amended for
aesthetic or implementation purposes?

Finally, when we define a problem, it is often hard to fully
codify all the real-world goals of the system. For ML, this
can lead to unwanted biases in the predictions if goals such
as “fairness” are not explicitly coded in the cost function
used for training. In optimization, subtle rules (for example,
“I prefer not to work late on Fridays”; or “Joe likes to drive
that route because it ends near his house”) are typically used
to judge solutions after the optimization is completed. We can
generate lots of diverse solutions in order to “optimize” these
goals post-hoc but we propose that, better still, an explanation
could again reveal which characteristics are important for
optimality, allowing one to refine the solutions and better
fit the real-world problem. This also relates to one of the
motivating factors behind interactive EC – we want something
that is mathematically optimized, but also something that
corresponds to the problem owner’s hard-to-codify intuition.
By incorporating XAI into interactive EC we could make it
easier for the problem owner to interact with the optimizer [6].

More concretely, the types of questions we wish to answer
with an explanation include [3]:

• Has the problem been formulated correctly?

• Are the patterns the model is drawing on to make its
prediction the ones we expect?

• Why did the model make this prediction instead of a
different one, and what would it take to make it change
its prediction?

• Is the model biased and are the decisions made by the
model fair?

A. What is an explanation?

It is difficult to define exactly what makes an explana-
tion. Informally, an explanation aims to answer the question:
“why?”. Previous work has considered explanations to provide
causal information [7], non-causal explanations [8], or as
deductive arguments [9]. In this paper, we will consider an
explanation to be an aid for a human to understand something
about a model. The end goal of an explanation is to act as an
interface between the model and the human, presenting infor-
mation about the model in a way that is easier to understand.
This means that the explanation does not need to capture the
entire behavior of the model, but must communicate something
important about it.

Explanations can be provided in many forms; examples
include visualizations, numerical values, data instances, or
text explanations [2]. They can also be provided as part of
a dialogue between a human and an explainer [7], [10].

B. Explainability and Interpretability

The terms interpretability and explainability are often used
interchangeably by researchers. In this paper, we distinguish
between them as referring to two different but related aspects
of attempting to understand a model [11], [12].

For our purposes, interpretability refers to whether a human
can follow a model’s decision-making process on its own.
Such interpretable models do not require explanations because
they are intrinsically self-explanatory. For example, models
with a simple symbolic representation or small decision trees
are generally considered interpretable. Note, however, that as
the size of a model grows, it may become more difficult to
follow the logic without external aid. Random forests and
neural networks are examples of models that are theoretically
interpretable at small scales but, due to their usually large size
or ensemble behavior, are no longer considered to be inter-
pretable. This aligns with Lipton’s notion that interpretability
is not one-size-fits-all [11]; instead, it covers a broad spectrum
where complex models may be less transparent but achieve
higher accuracy, while, conversely, simpler models are easier
to understand but may sacrifice performance.

On the other hand, even if we cannot trace the exact logic,
a model can still be considered explainable if a human-
understandable explanation can be provided for what the
model is doing or why a decision is made. Explanations do
not need to capture the full behavior of the model, and in
general, encompassing the full behavior in a single explanation
is nearly impossible without creating an equally complex
explanation. However, explanations can provide windows into
particular aspects of the model’s behavior. Some practical
methods for providing explanations for particular aspects of

3

Difficulty of Understanding

Hard

Easy

Human
Understandable

Intrinsically
Interpretable

Slightly
Uninterpretable

Moderately
Uninterpretable

Smaller burden of explanation

Larger burden of explanation Limit of
explainability

Highly
Uninterpretable

Understandable
with Explanation

Unexplained

Fig. 1. As models and solutions become more difficult to understand, the
amount of explanation required increases. Simple solutions (left) may not
require any explanation at all, and are intrinsically interpretable. Others
(middle two) may lie beyond the ability of a human to grasp easily, but can be
understood with explanation. Finally, some models may remain opaque even
with the current best efforts at explanation.

a model include evaluating feature importance, approximating
the local or global behavior with a simpler model, or compar-
ing the prediction to be explained with other similar inputs.

As illustrated in Figure 1, as an AI system becomes more
difficult to understand the effort required to explain them ade-
quately becomes greater. Below a certain threshold, depending
on the audience, a system is easy enough to understand that
it can be considered to be intrinsically interpretable. Above
this threshold, explanations can provide sufficient aid that a
normally uninterpretable system can still be understood. For
example, a model might be multidimensional and uninter-
pretable when looking at its equations alone, but with the
aid of visualizations, feature importances, and local approx-
imations we can grasp its general behavior. As we consider
larger or more complex models, we require more and more
of these explanations to be confident we understand how the
model works. At a certain point, it becomes impractical to
explain to a satisfactory level how a system works, or the
explanations we have are insufficient to capture everything.
For example, although explanations can provide some insight
into a large language model, there are still many aspects of its
behavior that remains unknown. These systems are ones which
lie beyond our current threshold of “understandable with
explanation”. This also points towards two ways of addressing
this problem: first, by reducing the complexity of the model
or otherwise bringing down the difficulty of understanding,
so that existing explanation techniques can be used; second,
by improving our ability to explain so that we can explain
more uninterpretable systems. We will discuss specific ways
of doing so in the later sections.

C. Why EC and XAI?

EC is an approach to AI inspired by the principles of
biological evolution that have found use in a wide variety of
applications, including optimization, ML, engineering design,
and artificial life. This field encompasses evolutionary algo-
rithms such as genetic algorithms (GA), genetic programming
(GP), and evolution strategies (ES), as well as, for extension,

swarm intelligence algorithms such as particle swarm opti-
mization. EC techniques often employ populations of solutions
and operators that introduce variation and diversity to explore
larger regions of the search space.

Evolutionary techniques have unique strengths that can offer
potential solutions to current challenges in XAI [13], [14].
First of all, as detailed in later sections, EC has a long
track record of successful applications to create symbolic or
interpretable models (e.g., decision trees or rule systems). By
constructing solutions using intrinsically interpretable compo-
nents, EC-derived solutions can guarantee the interpretability
of the evolved representation. EC can also be used to create
interpretable approximations of other complex models, i.e., to
produce explanations for their behavior.

Second, the inherent flexibility of evolutionary methods,
such as the ability to perform derivative-free, black-box
optimization, positions them as a versatile tool to perform
optimization where other methods struggle. For instance, they
can be applied in scenarios where access to an ML model
is only available through an API that returns predictions and
no other information about the model’s confidence or internal
logic. Such a scenario is becoming increasingly common,
but evolutionary methods can still perform optimization in
these cases, to probe the model for patterns in its behavior
or generate counterfactuals or adversarial examples. This also
enables the optimization of unusual or customized metrics (for
example, for measuring interpretability) without constructing
metrics that can be readily optimized through gradient descent.
Additionally, this flexibility also paves the way for hybrid
methods when combined with other algorithms or to build
meta-optimizers.

One especially useful capability offered by EC is multi-
objective optimization. Many problems in XAI are inherently
multi-objective, requiring a balance between model faithful-
ness and human interpretability, or complexity of the expla-
nation. In many cases we may also want a diverse range of
explanations – for example, different people may find different
explanations to be helpful, or single explanations may not fully
explain all the relevant characteristics of the model. The use
of diversity metrics as well as quality-diversity algorithms can
allow us to generate a range of different explanations for the
problem.

Conversely, we also believe XAI principles can offer useful
insights to EC and are currently under-utilized. XAI can pro-
vide insights into the decision-making process of evolutionary
algorithms, explaining why certain solutions were selected
in the end. Not only is this invaluable for debugging and
improving algorithms, but end users may want to understand
the reasoning behind why a particular solution was chosen.
This is especially important in fields where the outputs of
any algorithm must be justified or understood by decision-
makers without deep technical knowledge of EC, such as in
engineering design or policy-making.

Furthermore, XAI principles can aid in the development of
more interpretable and transparent fitness landscape analyses.
Understanding the fitness landscape is critical for under-
standing the difficulty of finding a solution as well as the
effectiveness of EC algorithms. XAI-inspired approaches can

4

Problem Complexity

Model
Complexity

Intrinsically
Interpretable

Model
Mismatch Explainability

Simple Complex

Simple

Complex

Model
Mismatch

Fig. 2. The interaction between problem and model complexity. Simple
models for simple problems are intrinsically interpretable, and do not require
explainability techniques. On the other hand, applying simple models to
complex problems may produce an interpretable model, but the model will
not accurately solve the problem. Explainability is needed when we require a
complex model for a complex problem, and we would like to understand the
model.

improve our existing tools for visualizing and interpreting
these landscapes, and understanding the landscape can serve
as an explanation in and of itself.

III. EC FOR XAI

In this section, we discuss methods for XAI and the ap-
plications of evolutionary algorithms to this task. ML is a
powerful tool for building a model of a system from data. As
ML models have advanced, so has their complexity, often re-
sulting in increased performance at the cost of interpretability.
Explainability becomes a critical component to address this
trade-off, ensuring that the models we rely on are not only
effective but also understandable and trustworthy.

A. Explainability and Complexity

The interpretability of a model is inherently linked to its
complexity [15]. Simpler models, such as linear regressions,
are considered inherently interpretable due to their straight-
forward decision-making processes which humans can follow
unaided. However, as model complexity increases, we lose
interpretability and must rely on explainability instead. To
clarify this relationship, we introduce a framework shown
in Figure 2, mapping problem complexity against model
complexity.

This begs the question: What is the complexity of a prob-
lem? We define problem complexity informally here, drawing
parallels with the concept of computational complexity. We
consider a problem’s complexity to be the complexity of the
model required to adequately capture its behavior up to the
desired level of accuracy. The more complex the problem, the
more complex the model must be to represent it faithfully.
This also means that some problems may be simple if we
are satisfied with a certain level of performance but may be
complex if we aim to capture all the nuances and relationships
in the data.

The complexity of a model (or a solution to an optimization
problem) includes aspects such as the number of parameters,
the depth of the structure, and the amount of computation
required. This complexity can be measured by a model’s

description length [16], inspired by the concept of Kolmogorov
complexity [17], or by parameterized complexity [15]. A
model with a lengthy description, numerous parameters, or
complex functions is considered more complex for our pur-
poses. Although allowing for greater model complexity might
increase a model’s capacity to solve problems, this can lead to
a loss of interpretability simply due to the size of the model.
For example, a neural network with billions of parameters, a
genetic program with a large number of instructions, or an
extremely deep decision tree can produce accurate models for
problems but be difficult to understand due to their size.

With these two axes in mind – that is, problem and model
complexity – we can identify four main areas of concern, each
of which represents a distinct combination of problem and
model complexity. They are as follows:

• Simple problem, simple model: In this scenario, the
desired behavior can be captured by a simple model. The
model is accurate but also intrinsically interpretable, so
there is no need for explainability in this case.

• Simple problem, complex model: When a complex
model, such as a deep learning model, is used for a
simple problem, the mismatch in complexity leads to a
model that is excessively complex for the task at hand.
While the model may perform well, it is difficult to
interpret and offers no advantages for the complexity
over a simple model which may perform equally well
for the simple problem. In this case, the issue is not one
of explainability but a result of the mismatch between
the problem requirements and the model used. Rather
than aiming to explain the complex model, a more fitting
approach would be to use a model of the appropriate
complexity and avoid the issue altogether.

• Complex problem, simple model: Conversely, applying
a simple model such as linear regression to a complex
problem can result in a model that is interpretable but
with inadequate performance. Such a model may fail to
capture the characteristics of the data to the degree of
accuracy required. While the model remains interpretable,
the issue is again a mismatch between the problem and
model, as the simple model cannot accurately model the
data.

• Complex problem, complex model: We argue that this
quadrant is the main area of concern for XAI, i.e., the area
where explainability is most relevant. In these cases, a
complex model is necessary to capture the nuances of the
data, but this complexity renders the model opaque and
uninterpretable. Explainability methods enable users to
navigate and understand complex models, building trust
in the model, even when the model cannot be understood
wholly on its own.

B. Types of Explanations

A wide variety of explanations focus on different aspects
of the modeling process. In this survey, we take a problem-
focused approach and consider the ML pipeline from data
to trained model (Figure 3). we structure our categorization
around the stage of the ML pipeline where they can be

5

Algorithm
Selection

Data

Prediction

Model

Explaining
Predictions

Explaining Data
and Preprocessing

Interpretability
by Design

Explaining Model
Behavior

Fig. 3. Overview of the process of building an ML model, showing areas
where explanations (magnifying glasses) are often applied. Examples of
methods in each category are described in Section II. Also shown is the
intrinsic interpretability approach (cogwheel), where models are designed to
be interpretable from the start. All these methods can be used together to
form a complete picture of a model’s behavior.

applied. This is meant to highlight that explainability is not
only applied at the end, to a fully trained model, but that it
is a tool that can be used to understand the entire model-
building process. By tying the categorization to the stages of
the pipeline, we also aim to provide practitioners with a clear
roadmap on areas where explainability can be applied.

In the next sections, we will address each area in turn.
First, as an introduction to each category, we will describe
some examples of conventional approaches. This overview is
not meant to be exhaustive but rather to provide a primer on
the current popular approaches. For a more extensive survey
of current methods in XAI, we direct the reader to recent
reviews [18], [19] on the topic. We will then survey EC-based
approaches in each area, providing an overview of the current
state-of-the-art with respect to combining EC and XAI.

C. Interpretability by Design

A growing concern on the importance of having ML models
that are interpretable by design, rather than explainable post-
hoc, has been recently advocated by many researchers in the
XAI field [2], [12], arguing that whenever appropriate and
possible, one should opt for models that are inherently explain-
able, or interpretable (white-box models). The main argument
to support this statement is that post-hoc explanations often
provide only local approximations of ML models, hence being
limited: 1) because they rarely capture the whole (global)
decision-making process of the model; and 2) because being
approximations (essentially, they model other models) they
can possibly introduce errors and thus not reflect the original
decision-making process of the main model. For these reasons,
“interpretable by design” models, based on some form of
knowledge representation, should be preferred.

Unlike traditional ML approaches for the generation of
models using such knowledge representations, which mostly
use greedy heuristics, EC methods leverage the global opti-
mization capabilities of evolutionary search. Learning Clas-

sifier Systems (LCS) are a notable instance of EC methods
applied to ML. Within LCS, some methods apply batch
learning [20], [21] while others use online learning [22]–[26]
using either reinforcement learning (RL) [22] or supervised
learning [27]. Most LCS approaches are applied to the gener-
ation of rule-based ML models, although other representations,
such as decision trees [28] or hyper-ellipsoids [29], have also
been explored. GP methods also have a long history of their
application to symbolic regression [30].

Model complexity has been addressed in a variety of ways.
For the EC methods generating variable-length models, the
broad range of standard techniques to deal with the bloat
effect [31] can be used to promote the generation of more
compact models. For instance, specific fitness functions can
be used to promote the generation of compact rule sets based
on the minimum description length (MDL) principle [32],
while other methods achieve this through multi-objective
optimization [33]. Moreover, rule-based ML models can be
simplified through the use of rule/rule set editing operators,
which can be hybridized with the standard global search of
EC methods (i.e., a memetic algorithm) [34], [35] or used
as post-processing operators [36]–[38]. Sparsity in neural
networks can be promoted through regularization, or through
evolutionary pruning [39], [40].

Similar attempts at combining RL and EC have tried to
obtain interpretable policies for RL tasks by combining deci-
sion trees induced by GP or Grammatical Evolution with RL
acting on the leaves while the policy interacts with the envi-
ronment [41]–[46], also through quality-diversity approaches
[47], [48] and in multi-agent settings [49].

Some other works in this area have explicitly focused on
addressing the interpretability question in white-box models.
The balance between accuracy and interpretability has been
explored in the context of genetic fuzzy systems [50]. In
this regard, some recent studies have proposed machine-
learned quantifiable measures of interpretability [6], while oth-
ers [51] have emphasized the importance of focusing on low-
complexity models, especially in the context of GP. Another
important aspect in ML, fairness, has been addressed in [52],
where explicit fairness constraints have been introduced in GP
to obtain fair classifiers.

Visualization techniques in the shape of heatmaps have been
used to represent the sets of classification rules generated
by LCS [53]. This technique was particularly effective when
combined with hierarchical clustering to reorder a dataset’s
rows (instances) and columns (features), as this enabled an ef-
fective global view of how the problem domain was partitioned
across the classification rules and what features were relevant
for each partition. Alternatively, 3D visualization approaches
have also been shown to be a very effective tool to represent
complete rule sets generated by LCS [54], by using different
axes to represent attributes, levels of generality of the rules in
which these attributes were involved, and estimated attribute
importance.

D. Explaining Data and Preprocessing
We begin with a discussion of methods that can be used to

explain the data. These are methods that aim to understand

6

the structure of the data, for example through clustering, even
though they may not become part of the final model. Although
this category is often omitted in discussions of XAI, it is worth
mentioning it as part of the overall pipeline. Every ML model
begins with the data, and any pattern learned by the model is
derived from the data, so it would be remiss not to discuss
this as a component of the whole process. We should remark
that methods under this category do not necessarily explain the
model itself, but as said aim to explain the underlying data on
which the model was trained, focusing on understanding the
data distribution and its characteristics.

Techniques such as exploratory analysis, data visualization,
and dimensionality reduction can be used to better understand
the patterns in the underlying data that the model might learn,
as well as identify any potential biases. Examples of these
techniques include Principal Component Analysis (PCA) [55],
[56] and t-Distributed Stochastic Neighbor Embedding (t-
SNE) [57], which reduce the dimensionality of data to allow
for easy visualization.

In addition, methods such as clustering and outlier detection
can help identify patterns or anomalies in the data that may
impact the model’s performance and aid in feature selection
and engineering. These include methods such as k-means
clustering and DBSCAN [58]. These explanations can help
identify data quality issues, biases, and preprocessing require-
ments, as well as build trust.

1) Dimensionality reduction: EC can be used to explain
data by means of dimensionality reduction and visualization.
One approach is GP-tSNE [59], which adapts the classic
t-SNE [57] algorithm to use evolved trees to provide an
interpretable mapping from the original data points to the
embedded points. Similarly, Schofield and Lensen [60] use
tree-GP to produce an interpretable mapping for Uniform
Manifold Approximation and Projection (UMAP). By pro-
ducing an explicit mapping function rather than simply the
embedded points, we can not only make the process more
transparent but also reuse the mapping on new data.

In some cases, we may want to use the lower-dimensional
representation for prediction as well as visualization. This is
useful for interpretability as it allows us to visualize exactly the
same data representation the model sees. Therefore, another
approach is to construct features that are both amenable to
visualization and well-suited for downstream tasks. Icke and
Rosenberg [61] proposed a multi-objective GP algorithm to
optimize three objective measures desirable for constructed
features – classifiability, visual interpretability and semantic
interpretability. Similarly, Cano et al. [62] developed a method
using multi-objective GP to construct features for visualization
and downstream analysis, optimizing for six classification
and visualization metrics. The classification metrics (accuracy,
AUC, and Cohen’s kappa rate) aim to improve the performance
of the downstream classifier, while the visualization metrics
(C-index, Davies-Bouldin index, and Dunn’s index) aim to
improve the clustering and separability of the features.

Moreover, GP has been effectively used for the ML task of
manifold learning [63], i.e., the creation of (ideally) reduced
data representations for high-dimensional datasets to facilitate
the work of downstream ML algorithms. Often, this task is

solved by black-box algorithms that perform a mapping from
an original space to a reduced one without a clear explanation
of how this mapping is designed. On the other hand, GP trees
offer an interpretable alternative for this task with white-box
transformation operations.

2) Feature selection and feature engineering: Feature se-
lection is a common preprocessing step in which a rele-
vant subset of features is selected from the original dataset.
The latter is used to improve the model’s performance and
interpretability by narrowing down the features the model
can draw on. As an explanation, feature selection shares
some similarities with feature importance, which identifies the
features a model is drawing on but, instead, restricts the model
explicitly so it can only draw on the chosen features.

Genetic algorithms are a straightforward and effective ap-
proach to feature selection, with a natural representation in
the form of strings of 1s and 0s, making them a popular
choice for feature selection [64]–[66]. GP can also be used
for feature selection since the inclusion of features in a tree
or linear genetic program is intrinsically evolved with the
program [67]–[69]. For an in-depth review of GP methods,
we refer the reader to [70]. Swarm intelligence methods, such
as particle swarm optimization, have been applied to feature
selection as well [71]. For a more detailed review of these
methods, we direct the reader to [72]. In addition to selecting
features for a model, feature selection can also be used to
improve data understanding by integrating it with techniques
such as clustering [73].

Feature engineering, also referred to as feature construc-
tion, is a related approach that involves building higher-level
condensed features out of basic features. GP can be used to
evolve these higher-level features for downstream tasks such
as classification and regression [74]–[77]. This approach can
also help improve a model’s interpretability since it can reduce
a large number of low-level features to a smaller number of
higher-level features which may be easier to understand for
humans. Moreover, it removes some of the modeling needs
from the black-box, replacing them with an a-priori (pre-
processing) transparent step, thereby reducing the amount of
explanation needed.

These methods also share many similarities with dimen-
sionality reduction techniques and, in some cases, can fall
under both categories. Uriot et al. [78] compared a variety
of multi-tree GP algorithms for dimensionality reduction, as
well as a tree-based autoencoder architecture. In the multi-tree
representation, each individual in the population is a collection
of trees each of which maps the input to one feature in the
latent dimension. In order to reconstruct the input for the
autoencoder, a multi-tree decoder is simultaneously evolved
with one tree per input dimension. Their results showed
that GP-based dimensionality reduction was on par with the
conventional methods they tested (PCA, LLE, and Isomap).

E. Explaining Model Behavior

Once we have the trained model, it may still be difficult to
understand how it works, even in cases where it is transparent
and we can inspect the internal mechanisms. Consider, for

7

example, a trained neural network. Even if in principle we
are allowed to inspect each weight and internal operation, the
model as a whole is still hard to understand. This is where
we turn to explanations to bridge the gap. Methods in this
category attempt to explain the internal function of the model,
for example, by inspecting the structure of a tree or the weights
in a neural network. These approaches can either attempt to
explain the entire model or to understand smaller components
of the model.

1) Feature importance: Global feature importance aims to
explain the dependence of a model on each feature it uses. For
example, feature importance returns a score that represents
the significance of each feature to the model. This helps
identify which features impact the model’s predictions most
and provides insights into how the model is making decisions.
This type of explanation can also be used to verify whether
the model is behaving as expected – for example, by checking
whether it is using the same features a human would to solve
the problem. In the case of a computer vision model, this type
of explanation can be used to determine if the features used
to classify a particular image as a cat make sense or if the
model is using spurious patterns in the data, such as identifying
the cat based on its surroundings. This type of explanation
can also aid in optimizing models and performing feature
selection by identifying less important features. Some models,
such as decision trees and tree ensembles like random forests,
provide built-in feature importance measures [79]. For models
without built-in feature importance measures, more general
methods such as partial dependence plots [80] and permutation
feature importance [79], [81] can be used to determine which
features have the largest impact. Evolutionary computation can
be used to go further and measure the strength of higher-
order interactions between features by evolving groups of
features [82].

2) Global model approximations: This approach, also
known as model extraction or a global surrogate model,
aims to approximate a black-box model with a more inter-
pretable model. This idea is closely related to knowledge
distillation [83], [84] in deep learning, but rather than simply
making the model smaller, we also want to make it more
interpretable. This is done by training or evolving a secondary
model, which both approximates the original model and is
more interpretable. An example of this approach was proposed
by Lakkaraju et al. [85]. Their approach approximates the
behavior of the model using a small number of decision sets,
providing an interpretable proxy for the entire model.

Evolutionary computation methods such as genetic pro-
gramming are well-suited for this approach as they can
guarantee interpretable models while optimizing for one or
more objectives. Evans et al. [86] propose a model extraction
method using multi-objective GP to construct decision trees
that accurately represent a given black-box classifier while
being more interpretable. This method aims to simultaneously
maximize the ability of the tree to reconstruct (replicate) the
predictions of a black-box model and maximize interpretability
by minimizing the decision tree’s complexity. The reconstruc-
tion ability is measured by the weighted F1 score over cross-
validation, and the complexity of the decision tree is measured

by the number of splitting points in the tree. The overall
evolutionary process uses a modified version of NSGA-II [87].
In their experiments on a range of classification problems,
the authors found that the accuracy remained commensurate
with other model extraction methods (namely Bayesian rule
lists, logistic regression, and two types of decision trees) while
significantly reducing the complexity of the models produced.

3) Domain-specific knowledge extraction from machine
learning models: Finally, domain-specific studies have also
been performed. For instance, the classification rules evolved
by EC methods have been analyzed in the domain of protein
structure prediction [88]. Furthermore, biological functional
networks (i.e., graphs) can be inferred by mining the structure
of ensembles of rule sets evolved by EC methods [89]. A topo-
logical analysis of such networks led to the experimentally-
verified discovery of the function of several genes (in the
biological sense of the word) for the Arabidopsis Thaliana
plant organism [90]. Knowledge representations for rules can
be constrained in a variety of ways, which shape the data
patterns captured by the sets of classification rules using such
representations. This potentially leads to the extraction of
different knowledge from the same data depending on the
chosen representation, as was studied for molecular biology
datasets [91]. In the field of neuro-evolution, EC methods
have instead been used to discover interpretable plasticity
rules [92]–[94] or to produce self-interpretable agents [95],
i.e., agents that (through self-attention) access a smaller frac-
tion of the input, for which interpretable policies are possible.

4) Explaining neural networks: Thus far, the methods we
have covered are general and can be used with a variety of
models. However, given the popularity of deep learning meth-
ods, we would be remiss not to discuss methods specifically
tailored to explaining these models. The rise in popularity of
deep learning, combined with the inherent black-box nature of
neural networks and their large number of parameters, makes
explaining them challenging but increasingly important.

For image classification, the large number of input features
(pixels) poses a significant problem for many explanation
methods. As such, it is necessary to reduce the dimension first,
for example by clustering similar pixels into “superpixels”.
Wang et al. [96] propose using a multi-objective genetic
algorithm to identify superpixels of importance for the final
prediction and using this set of superpixels as an explanation.
The genetic algorithm uses NSGA-II to optimize for the least
number of superpixels used while maximizing the model’s
confidence in its prediction.

Methods have been developed for explaining the internals
of deep learning models [97]. As an example of one such
method, Interpretable Lens Variable Models [98] train an
invertible mapping from a complex internal representation
inside a neural network (i.e., the latent space in a generative
or discriminative model) to a simpler, interpretable one.

More recently, the field of “mechanistic interpretability” has
gained popularity, aiming to understand the internal operations
and mechanisms of neural networks. This field attempts to
reverse-engineer and describe the algorithm performed by
the layers of a neural network. One promising thread of
work has been the Circuits approach, which discovered curve

8

detectors in vision models [99] and interpretable circuits in
small transformer models [100].

As an example of this approach, mechanistic interpretability
has been used to explain the “grokking” phenomenon seen
when training neural networks [101], by which some networks
learn the training data quickly but only generalize well after
a long period of further training in which little appears to
happen. In this work, Nanda et al. show that, when training a
transformer model to perform modular addition, the network
first memorizes the training data directly before eventually
learning a general algorithm for the problem. They are able
to describe the exact algorithm used by the network, by
inspecting the activations and ablating specific components.

This is a space that is ripe for innovation in the evolu-
tionary computation community. Evolutionary methods have
been used to explore the decision boundary [102] and prompt
space [103] of language models, attempting to map out the
space of inputs along relevant dimensions. Another approach
is to directly interpret the network, such as by using symbolic
regression to find a expression that matches the gradients of
the network [104].

F. Explaining Predictions
This type of approach aims to explain a specific prediction

made by a model. As such, the explanation only needs to
capture the behavior of the model with respect to the prediction
in question, rather than the model as a whole.

1) Local explanations: Instead of creating an interpretable
model to approximate the global performance of a black-box
model, which may not be possible, these approaches only
attempt to approximate the local behavior using an evolution-
ary algorithm. One notable method in this category is Lo-
cal Interpretable Model-agnostic Explanations (LIME) [105].
LIME constructs an explanation by generating a collection of
instances in the vicinity of the input to be explained, each
accompanied by the model’s prediction. It then fits a linear
model to this new dataset, serving as a local surrogate that
approximates the original model’s behavior in that specific
region. While this explanation does not necessarily reflect the
global behavior of the model, it is locally faithful and can
be used to understand the behavior of the model around that
point.

Ferreira et al. [106] proposed Genetic Programming Ex-
plainer (GPX), a GP-based method that fits a local explanation
model for a given input example. Similar to LIME, when given
a sample input to be explained, the method samples a set
of neighboring data points around the input and fits a local
explanation. However, rather than a linear model, GPX uses
a GP to evolve symbolic expression trees that best capture
the behavior of the pre-trained black-box model over the
neighboring data points. The authors tested this approach on
both classification and regression datasets and reported that
the GP-based approach captured the model’s behavior better
than LIME, as the assumption of linear local behavior was not
always valid, and also outperformed a decision tree used as
an explainer for the same neighbor set.

On the other hand, Guidotti et al. [107] proposed a method
called Local Rule-based Explanations (LORE), which applies

an evolutionary algorithm to neighborhood generation rather
than evolving the explanation itself. Specifically, a genetic
algorithm generates a set of points near the prediction to be
explained, which are either classified the same as or differently
from the original prediction while being nearby. A decision
tree is then used to fit the local behavior of the black-box
model. The use of a genetic algorithm here ensures a dense
sampling of points in the local neighborhood that lie on both
sides of the decision boundary.

Feature importance can also be provided for individual pre-
dictions. Shapley additive explanations (SHAP) [108] attempts
to provide a universal method for assessing feature importance
that can be applied to most ML models. This is based on
the Shapley value, a concept from cooperative game theory
that assigns a value to each player in a game based on their
contribution to the overall outcome. In the context of ML, the
“players” are the features in the data, and the “game” is the
prediction task. The Shapley value scores each feature based
on its contribution to each prediction. The exact calculation
of Shapley values is usually computationally impractical, as
it involves evaluating every possible combination of features.
However, SHAP proposes approximating these values using
sampling and regression, making the estimation of feature
importance computationally feasible. This method is widely
used in the field of XAI.

2) Counterfactuals: Counterfactual explanations are an-
other type of explanation that provides insight through a
hypothetical example where the model would have made
a different decision. For instance, “the model would have
approved the loan if the income were $5000 higher” is a
counterfactual explanation that identifies how the input should
change in order to change the model’s result [109]. This form
of explanation is intuitive and can be performed on a model
in a black-box manner without access to the internal logic
of the model. Another notable advantage of counterfactual
explanations is that they afford users actionable steps or
recourse to achieve a desired result [110]. They are also
inherently faithful to the model’s behavior since they are
grounded in actual model evaluations. However, because they
consist of single instances or data points, they only provide
limited insight into the model’s global behavior.

Diverse Counterfactual Explanations (DiCE) [111] is an
method of constructing counterfactual predictions. The aim
of this method is to produce counterfactuals that are valid
(produce a different result when fed into the model), proximal
(are similar to the input), and diverse (different from each
other). Diversity is desirable here as it increases the likelihood
of finding a useful explanation and provides a more complete
picture of the model’s behavior. DiCE generates a diverse set
of counterfactual examples using a diversity metric based on
determinantal point processes [112], a probabilistic model that
can solve subset selection problems under diversity constraints.
This diversity constraint forces the various examples apart,
while an additional proximity constraint forces the examples
to lie close to the original input. The method also attempts to
make the counterfactual examples differ from the input in as
few features as possible (feature sparsity).

Evolutionary computation is well suited to this task as a

9

black-box, possibly multi-objective optimizer, as it allows us to
find counterfactuals without knowing the internal workings of
the model while also optimizing for multiple desirable criteria
in the counterfactuals.

CERTIFAI [113] generates a population of counterfactual
explanations using a model-agnostic genetic algorithm. The
initial population is generated by sampling instances that lie on
the other side of the decision boundary of the model (i.e., are
classified differently from the instance to be explained). Then,
the genetic algorithm optimizes the population to minimize the
distance (for some notion of distance, depending on the type of
data) from each counterfactual instance to the input instance.
The population is then analyzed for (1) robustness, which
increases if the best counterfactual examples found are farther
away from the input, and (2) fairness, which is measured by
comparing robustness across different values of a particular
feature.

GeCo [114] uses a genetic algorithm with feasibility and
plausibility constraints on the features, specified using the
constraint language PLAF. This allows one to rule out certain
counterfactuals that would be useless to the user (e.g., coun-
terfactuals where the user changes their gender or decreases
their age). Like CERTIFAI, the genetic algorithm minimizes
the distance from the input instance to the counterfactual
examples, prioritizing examples on the other side of the deci-
sion boundary while keeping examples close to the decision
boundary if not enough counterfactuals are available. The
fitness function does not consider how many features are
changed relative to the input instance (with a smaller number
being preferred for ease of understanding), but the algorithm
is biased toward a smaller number of changes by initializing
the population with only one feature changed.

Multi-objective counterfactuals (MOC) [115] explicitly use
multi-objective optimization to consider multiple desirable
properties of the explanations. MOC uses a modified version of
NSGA-II to perform its search. Among the changes are the use
of mixed integer evolution strategies (MIES) [116] to search a
mixed discrete and continuous space and a different crowding-
distance sorting algorithm which prioritizes diversity in feature
space. A total of four objectives are used, optimizing for these
four desirable properties: the model output for the example
should be close to the desired output; the example should lie
close (in the feature space) to the input to be explained; the
example should not differ from the input in too many features;
and, the example should be plausible (i.e., likely to be drawn
from the same distribution as the real data), which is measured
by its distance to the closest k data points.

3) Adversarial examples: Adversarial examples are closely
related to counterfactuals. An adversarial example is counter-
factual, but it intends to create an incorrect prediction [117].
This is done by applying a small perturbation to an example
to change its classification. Most approaches search for ex-
amples that are as close to the original input as possible and
perceptually similar to the input. These examples are a method
to highlight failure modes of the model as well as a potential
attack vector on deep learning models.

Su et al. [118] propose a method of finding adversarial
examples which modify only one pixel in an image. This

contrasts previous methods that modify multiple pixels in the
image and are more obvious to humans. Their method uses
differential evolution, where each individual is encoded by the
coordinate of the pixel to be modified and the perturbation in
the RGB space. They find that, in many cases, one pixel is
sufficient to deceive the model. Other works explored the gen-
eration of adversarial image perturbations through evolution
strategies [119] and the clonal selection algorithm [120].

Adversarial examples are also present in models built for
other domains, such as natural language processing. Alzantot
et al. [121] generate adversarial examples on a sentiment
analysis model and a textual entailment model. In addition,
the examples they produce are designed to be semantically and
syntactically similar to the original input, making the attack
more difficult to spot. A genetic algorithm is used to optimize
for a different target label than the original. Mutation occurs
by changing words in the input to similar words as measured
by a word embedding model (GloVe) and filtering out words
that do not fit the context.

G. Assessing Explanations

Finally, rather than using EC to generate the explanations
themselves, we will discuss some ways in which EC can be
used to assess or improve the quality of other explanation
methods.

Huang et al. [122] propose two metrics to assess the
robustness of an explanation: worst-case misinterpretation
discrepancy and probabilistic interpretation robustness. Inter-
pretation discrepancy measures the difference between two
interpretations, one before and one after perturbation of the
input. For an interpretation to be robust to perturbations, it is
desirable for this value to be low. The authors then measure
the discrepancy in two worst cases: the largest interpretation
discrepancy possible while still being classified as the same
class and the smallest interpretation discrepancy possible while
being classified differently (adversarial example). These values
are optimized using a GA. The other metric, probability
of misinterpretation, calculates probabilistic versions of the
above: the probability of an example having the same clas-
sification but a significantly different interpretation and the
probability of an example having a different classification
but a similar interpretation. This is estimated using subset
simulation.

It is also possible to perform an adversarial attack on the
explanations themselves. Tamam et al. [123] do this with
AttaXAI, a black-box approach based on evolution. AttaXAI
tries to evolve an image similar in appearance to the original
input that produces the same prediction from the model but
with an arbitrary explanation map. In their experiments, pairs
of images were selected and were shown to be able to generate
a new image with the appearance and prediction of the first
image but with a similar explanation map to the second.

Much of the visualization work described above has a
considerable drawback when considering explainability in that
only a limited amount of evaluation has been undertaken with
explainability in mind. A standard approach to evaluating
visualization research within EC is to apply visualizations to a

10

benchmark dataset – perhaps a benchmark approximation set,
a group of Pareto front approximations generated on multi-
objective test problems with known characteristics [124], or
a run of an algorithm on a problem that has a specific type
of landscape whose performance we would like to visualize.
These are valuable approaches, as they confirm that a proposed
visualization technique is able to represent the characteristics
of solutions or algorithm execution that we seek to present
to users. Other approaches included examining the features
offered by a visualization according to a usage taxonomy and
undertaking a usability study. These latter approaches are im-
portant to the analysis of visualizations from an explainability
perspective.

A usability study is a process by which a human user’s
ability to use a computer system is formally evaluated. In
the context of visualization, this typically assesses the extent
to which a user can interpret the information presented in
a visualization. A few examples can be found in the EC
literature wherein a usability study has been conducted. A
small-scale usability study was conducted in [125], wherein
participants were asked to engage in a number of tasks
(selecting the best and worst solutions from a number of
visualizations) and were assessed on their accuracy and time
taken to complete the task. Another study [126] asked users to
reflect on their use of a visualization tool using a questionnaire
with a range of scored and open questions. Considering the
range of cases in which usability studies have been used
within the wider visualization community, we argue that the
EC community can gain much from incorporating them. As a
first step, studying the accessibility of existing methods on a
considerably larger scale – both in terms of respondents and
the tasks they are asked to complete – is recommended. This,
in turn, will require careful consideration since, for example,
the DTLZ test problem suite used to showcase many of the
visualization tools discussed above is not easily interpretable
by non-experts. Instead, benchmark tasks that human users can
easily understand must be identified. How best to leverage
usability studies within the wider context of XAI is still an
open question [127], with proposals including the creation
of question banks [128], or evaluating different query and
modality types [129]. All of these approaches can be readily
adapted for use within EC.

IV. XAI FOR EC

In this section, we consider a complementary perspective to
that in Section III: explainability for EC and optimization ap-
proaches in general. The motivation is similar: an optimization
algorithm will follow lengthy and often complex processes to
find optimal or near-optimal solutions that are presented to
a decision-maker. Explanations here also help the decision-
maker answer our general questions set out in Section II.
Overall, we view the process (Figure 4) of optimization as
having three stages: problem setup or definition, iterative
optimization or search, and analysis of solutions. There is
scope for explainability at each of these stages, which we will
elaborate on in the following sections.

Optimization
Run

Solutions

Explaining
Solutions

Algorithm
Selection

Parameter
Tuning

Interpretability
by Design

Explaining Problem
Landscapes

Explaining Problem
Landscapes

Explaining Optimizer
Behaviour

Fig. 4. Overview of the process of using an optimization algorithm, showing
areas where explanations (magnifying glasses) can be applied.

A. Interpretability by Design

Much of the challenge in tackling an optimization problem
is in designing and formulating the objectives and solution
representation. Interpretability can be a key factor in the
design choices made at this stage; conversely, the problem’s
design is an important part of explaining it. Thus, more
direct representations and explicit encoding of the variables,
objectives, and constraints of real-world problems might be
favored if interpretability is important. In this setting, a MILP
formulation of a problem’s objectives and constraints, whether
to be solved by mathematical optimization or EC, would be
preferable to a “black-box” function evaluation. Matheuristics
[130] are a successful development in this area. An alternative
approach [131] used decision trees to provide interpretable
rules to choose solutions for optimization problems with
the trees constructed by MILP or heuristics. Handling the
components of an objective separately rather than together
can permit post-hoc analysis of how solutions have been
chosen throughout the evolutionary process; this motivates
the use of lexicographical approaches to tournament selection
such as those proposed by Deb for constraints [132] and
multiple objectives [133], or lexicase selection in GP [134].
The tackling of multi-objective problems can also be made
more transparent through the use of post-hoc multi-objective
evolutionary algorithms [135]–[137] that approximate a Pareto
front, allowing the decision-maker to understand the trade-off
between objectives, rather than having to guess the trade-off
when choosing weightings for a priori optimization (e.g., a
weighted sum of objectives). We will return to this theme in
Section IV-C.

Explainability also motivates the use of direct over indirect
representations: it is self-evident that the closer the solution
representation and decision variables are to the real-world
application, the easier the solution explanations are in the
applied setting. There is often a trade-off here. For exam-
ple, indirect representations such as hyperNEAT [138], [139]

11

and Grammatical Evolution have generally been found to
outperform direct representations such as the tree structures
of classical GP [140]. On the other hand, more explicit
formulations of the problem allow for greater control of the
operators that can be customized to the problem at hand. For
example, grey-box optimization [141] exploits knowledge of
the problem domain using direct encodings for combinatorial
problems in order to improve performance. As with ML, as
noted in Section III-D2, direct representations should still be at
the right level for interpretability: too low and the information
is too fine-grained and dense for a human to interpret; too
high and the real-world meaning is lost. We suggest that there
could also be scope for evolutionary algorithms in engineer-
ing and selecting features with respect to interpretability for
optimization problems themselves; this may be accomplished
by following a cooperative coevolution approach as is already
successful in large-scale global optimization [142].

The algorithmic framework itself also has an impact on
explainability. A greedy or steepest ascent hill-climber is
deterministic, with a single point to follow, resulting in an
easily understood search process more interpretable than a
stochastic search or a population-based algorithm. In this
regard, Estimation of Distribution Algorithms [143]–[146]
construct explicit representations of the problem, highlighting
a clear mathematical route to the solutions, though this task
can itself be sufficiently complex as to be non-interpretable.

B. Explaining Problem Landscapes

Landscape analysis aims to capture the interactions between
algorithms and their operators with solution representations.
Such approaches might be considered as being about under-
standing how the search proceeds rather than why particular
solutions are chosen, but both aspects can be viewed as
important for explainability.

1) Landscape analysis and trajectories: Landscape anal-
ysis [147] is, arguably, one of the main points of contact
between XAI and EC. Landscape analysis, in fact, encom-
passes a set of tools that aim to understand and explain
algorithm behavior based on the problem features, as well as
predict algorithm performance and perform automatic algo-
rithm configuration and selection. In this area, some works that
explicitly aim at explainable landscape-aware prediction [148],
[149] have been proposed recently.

We might consider an algorithm’s behavior to be defined
in terms of its trajectory through the search space. Such a
trajectory is the sequence of points occupied in the search
space by the algorithm’s population (or even a single solution,
in the case of single-solution algorithms) over the course of the
algorithm’s run. In this way, the trajectory captures the algo-
rithm’s progress: when particular features of the solutions were
discovered, when the algorithm got stuck in a local optimum or
on a plateau, when premature convergence occurred, and so on.
[150] introduced the concept of search trajectory networks as a
tool to visualize these trajectories, demonstrating the approach
for several combinations of algorithms and problems.

Search trajectories have also been explicitly proposed as
a promising route towards XAI for EC [151]. In this work,

Principal Component Analysis is applied to solutions visited
by an EA in order to capture features prevalent in the popu-
lation of an algorithm at each generation. Each component
captures features in the decision space, with the loadings
for each component identifying correlations between groups
of variables. As variables begin to converge over the run,
each component varies in prominence within the population,
allowing for visualization of the algorithm’s progress. The
authors also demonstrated strong connections between the
loadings of each component and known global optima for
multiple bit-string encoded benchmark functions (e.g., groups
of k-bits being correlated for trap-k functions and alternate
bits negatively correlated for alternating-ones functions).

In a related work [152], the authors propose a feature ex-
traction method that describes the trajectories of optimization
algorithms using simple descriptive statistics. These statistics
can then be used by ML methods for performance prediction
or the automatic configuration of an algorithm on unseen
problems.

Population Dynamics Plots were also recently proposed
in [153] as a way to visualize the progress of an EA as
the search proceeds, allowing the lineage of solutions to be
traced back to their origins and providing a route to explain
the behavior of different algorithms. The authors visualized
solutions to multi-objective knapsack problems in terms of
their objectives, projecting multi-objective values down to two
dimensions for visualization. The proximity of solutions to
the feasible/infeasible boundary was captured, as were the
convergence behaviors of different algorithm configurations.

A further alternative approach to capturing the trajectory of
a metaheuristic run is the creation and mining of surrogate
fitness models fitted to the population [154], [155]. Surrogate
models are most commonly used to speed up the runs of EAs
by training a model that takes the place of the fitness function.
The idea proposed by [154], [155] is that the surrogate model
is biased towards the solutions visited by the EA as it runs,
and probing the model reveals the algorithm’s perspective of
characteristics like the sensitivity of the objectives to each
variable, as well as inter-variable relationships. These papers
presented some preliminary results on well-known bitstring-
encoded benchmark functions.

Studies about hyper-heuristics [156] and parameter selec-
tion [157], instead, have highlighted that specific parameter
settings allow EC methods to exhibit a “generalistic” behavior,
i.e., to perform generally well even on very different types
of functions. The search for such settings has been shown
to be effective, for instance, in selecting solutions from the
Pareto fronts of multi-objective optimization problems [158].
Stemming from these considerations, it might be worth explor-
ing whether the search for simple parameter configurations
motivated by an easier explainability of the corresponding
algorithm may also lead to generalistic solutions, as the ML
theory (and Occam’s razor) seems to suggest.

2) User-guided evolution: Allowing the user to influence or
provide input into the model-building process can also improve
trust. An approach described by [159] combines the principles
of parallel coordinate plots with a multi-objective EA to allow
users to define areas of interest where they would like to find

12

solutions.
Another mechanism for understanding the solution land-

scape is through quality-diversity or illumination algorithms,
such as MAP-Elites [160], [161]. These algorithms can gen-
erate diverse high-quality solutions varying along user-defined
dimensions. This allows the user to understand how the quality
of a solution varies with respect to different parameters, which
may differ completely from the underlying parameters used
by the model. An interesting future direction here could be
the design of algorithms that provide human-interpretable
explanations as they proceed, incorporating human feedback
as part of the search. This might resemble the preference-
based approach used in multi-objective optimization [162] but
focused on the decision space.

Gaier et al. [161] proposed a hybrid approach by using
MAP-Elites alongside a surrogate model to add efficiency to
the MAP-Elites process. They proposed reducing the need
for the large number of checks normally required for MAP-
Elites. The proposed solution, Surrogate-assisted illumination
(SAIL), aims to achieve this by integrating an approximation
model (surrogate) alongside an intelligent sampling of the
fitness function. As with MAP-Elites, the search space is
partitioned into shape bins, each of which holds a map with
a different layout of feature values. Firstly, a surrogate is
constructed based on an initial population of possible solu-
tions, also including their fitness scores. MAP-Elites is then
used to produce solutions to maximize the fitness function
and generate an acquisition map. Thereafter, new solutions are
sampled from this map and additional observations are used
to iteratively improve the model, looping through this process
to generate increasingly better solutions. The performance
predictions are then used by MAP-Elites in place of the
original fitness function to generate a prediction map of near-
optimal representations.

Urquhart et al. proposed in [163] an application of MAP-
Elites to increase trust in metaheuristics. This paper specifi-
cally aimed to address the criticism that end-users have no role
in the construction of the end solution. The authors proposed
that MAP-Elites can be used to filter the solution space and
provide a set of solutions for the users, from which they can
select the one most applicable to them and their needs. This
increases trust in the selected solution because the user is
provided with an opening to the process and a measure of
influence as to what constitutes a good solution.

More recently, [164] presented an extension of the MAP-
Elite process that extracts explainable rules from MAP-Elite
archives. This work addresses the issue that MAP-Elites gener-
ate thousands of solutions to a problem; extracting information
from such a large number of solutions is a challenge for a
decision-maker. Instead, the authors proposed the use of GP
and a rule-induction approach that generates a small number of
rules that capture the characteristics of the solutions generated
by the optimizer.

C. Explaining Solutions

XAI for EC is applicable in many stages of the EC pipeline
as outlined in Figure 4. The output of the optimization

run – the solutions – could also be mined for explanatory
artefacts. The generation of such artefacts requires the post-hoc
evaluation of the solutions created by the optimizer, whether
for Pareto fronts, populations, or single solutions. This post-
hoc analysis involves, in essence, the exploration of alternative
causes to generate an explanation regarding solution quality
and to reveal something about the model used.

1) Interpreting solutions: The interpretability of solutions
can often be difficult to define. As noted by [2], it may
broadly be understood as the “extraction of relevant knowledge
from a machine-learning model concerning relationships either
contained in data or learned by the model”. This is connected
to the older concept of backbones [165], which represent
components of a solution that are critical to its optimality. In
a satisfiability decision problem, the backbone of a formula is
the set of literals which are true in every mode. Identification
of such characteristics in a solution could form part of an
explanation of its quality.

Dimensionality reduction techniques have been shown to
help explain optimizer solutions, as proposed in [166]. Here,
the latent problem structure and its effect on optimizer output
are investigated by decomposing the search trajectories us-
ing Multiple Correspondence Analysis (MCA). By projecting
the trajectories into variance-based lower-dimension spaces,
feature importance at various stages of the search can be
determined. These, in turn, may be used to aid end-users in
interpreting both high- and low-impact influences to a solution
in single-objective problems.

In multi-objective space, the trade-off between a solution’s
explainability and its representation’s accuracy has been ex-
plored in [167]. Here, a successful reduction in the complexity
of the explanation representation is achieved through the step-
wise regularization of the set of linear regression models
generated from the output of the optimizer. This reduction
retains the interpretability of the solution explanation while
maintaining the predictive ability to outline domain-relevant
mappings between the regressors and the objective function.

Innovisation [168], [169] was proposed by Deb et al. so
that design principles shared between solutions to multi-
objective optimization problems can be identified, explaining
optimality in the decision space by highlighting the principles
that ensure Pareto-optimality. While innovisation emphasizes
understanding the underlying principles that lead to optimal
solutions, more recently a focus on exploring the factors that
lead to maintaining a level of coherence between solutions
can be observed in [170]. Here, methods for maintaining the
similarity of multi-objective solutions comprising the Pareto
front are investigated. This is done to provide experts with a
smoother view of the transition in the solution space between
the solutions in a Pareto front approximation.

2) Visualization of solutions: Within the many-objective
optimization community, a considerable body of work exists
around visualizing Pareto front approximations. The challenge
therein is representing solutions’ objective vectors in cases
with M > 3 objectives. Human cognition prevents decision-
makers from comprehending four or more spatial dimensions,
and work has therefore focused on three approaches: (1)
identifying visualization techniques that can present solutions

13

in terms of the full set of objective vectors; (2) identifying
objectives that are redundant and can be discarded so that a
standard visualization tool can be used; and (3) approaches
for applying feature extraction to identify new coordinate sets
that can more easily be visualized.

The first category comprises techniques such as parallel
coordinate plots [171], [172] and heatmaps [173]. Both are
popular techniques in the visualization community for visual-
izing large datasets because of their ability to scale. Both can
handle many data items (such as the objective vectors in a
Pareto front approximation) and features (corresponding to the
objectives in this case). Unfortunately, both techniques suffer
from a lack of clarity in their basic form. In the case of the
parallel coordinate plot, solutions overlay each other, which
leads to a large proportion of the solution set being obscured.
Heatmaps are arbitrarily ordered — in terms of both rows and
columns -– causing the relationship between pairs (or larger
groups) of solutions or objectives to be extremely difficult to
observe. In both cases, simply reordering the data can help
with the accessibility of the methods. Parallel coordinate plots
have seen the objectives reordered for the trade-off between
objectives to be more readily identified [174] while the clarity
of heatmaps has been improved by reordering both the rows
(solutions) and the columns (objectives) with agglomerative
clustering [173] and spectral clustering [175] to better reveal
patterns and trends. Parallel coordinate plots have been further
enhanced using user interaction, such that the users can filter
out solutions that are outside of the objective value bounds
they specify. This reduces their cognitive load by requiring
them to focus on fewer objective vectors [172].

The latter two categories both deal with dimensionality
reduction. Feature extraction techniques that have been used
include PCA [176]; self-organizing maps (SOM) [177]; and
multidimensional scaling (MDS) [178], among others. What-
ever the technique, the approach relies on projecting the
objective vectors from RM>3 into a new space RM∈{2,3}. This
makes it possible to use a standard visualization technique
such as a scatter plot, which enables the Gestalt principles of
presentation to be followed – similar points in the visualization
are placed close together, for example. From an explainability
perspective, however, projecting objective vectors into a new
space that bears no resemblance to the original objectives
around which the problem was formulated can confuse a
decision-maker. This situation can be improved with simple
approaches, for example, by allowing the user to vary the
color scheme according to different objectives; however, it
can be difficult for the users to orientate themselves in terms
of multiple objectives such that, in some cases, the trade-
off can be difficult to observe. A proposal [175] designed
to address this issue was to annotate the projected solutions
with information such as the best and worst solution on
each objective, as well as projecting samples drawn from the
coordinate axes into the visualization. Further work sought to
identify the edges of the original high-dimensional Pareto front
approximation so that the distance from extremes in the front
can be identified in a low-dimensional space [179].

D. Explaining optimizer behavior

The analysis of different optimizers is closely related to
landscape analysis, regardless of the optimization problem.
In this field, researchers try to decouple the effects of the
optimizers’ internal workings and the effect of the search
landscape imposed on the algorithm. One way of doing this
is by using special functions such as the f0 function proposed
in [180], a uniform random fitness function, or a constant
function to assess certain behavioral patterns in algorithms
by running them repeatedly and observing patterns in the
distribution of the points finally found. Another way is to use
a large and diverse set of benchmark functions or gradually
change the properties of benchmark functions using affine
combinations [181], [182].

Behavior-based benchmarks are a sophisticated means to
analyze the operational dynamics of metaheuristics, especially
under varying conditions. One example of such a benchmark-
ing tool is the BIAS toolbox [183], [184]. This tool stands out
by offering a behavior-centric analysis framework, enabling
researchers to scrutinize whether and how different algorithms
or their specific components may introduce structural bias
(SB) into the optimization process. SB refers to a bias in-
trinsic to iterative optimization algorithms, which may drive
the optimization process towards parts of the search space
independently of the objective function, thus influencing the
algorithm’s efficiency and its outcome. Through the appli-
cation of the BIAS toolbox, one can detect the presence,
intensity, and nature of SB within these algorithms. A deep
learning approach to detect SB was introduced in [185], where
XAI techniques are used to highlight different SB patterns.
Such insights are important, as they shed light on potential
improvement areas, helping to refine these algorithms for
enhanced performance.

For the purpose of gaining additional insights by bench-
marking and analyzing algorithmic performance, the paper
[186] introduces a concept termed “explainable benchmark-
ing”. Specifically, the authors propose a framework and a
software package designed to dissect and analyze the per-
formance of various optimization algorithms alongside the
influences wielded by their different algorithmic components
and hyper-parameters. This methodology is applied to two
modular optimization frameworks, facilitating a granular anal-
ysis of the effects of various algorithmic elements and con-
figurations on performance across many scenarios. This work
uses TreeSHAP and other global and local XAI techniques
to calculate and visualize the performance contributions of
each of these algorithmic components and hyper-parameters,
providing several insights into what drives performance on
different types of objective functions. In a similar work [187],
the f-ANOVA method is used to derive insights into which
components of modular algorithms contribute to optimization
performance. Data gathered from these experiments can then
be used in combination with landscape analysis methods to
derive additional insights and eventually learn the mapping
between algorithm configuration, problem landscape charac-
teristics, and performance.

Another way of explaining algorithm behavior and, more

14

specifically, benchmarking results is by comparing many dif-
ferent benchmark experiments reported in the literature over
the years and combining these result datasets in a unifying
ontology. For this reason, the optimization algorithm bench-
marking ONtology (OPTION) was proposed in [188], with
an earlier similar attempt done in [189]. OPTION provides
the vocabulary needed for semantic annotation of entities
such as algorithms, problems, and evaluation measures. It also
provides means for improved interoperability and reasoning,
making these benchmark experiments much more explainable.
In [190], a performance prediction model built on top of OP-
TION was proposed. More specifically, the authors extended
the OPTION ontology with the vocabulary needed to represent
modular black-box optimization algorithms. They then derived
knowledge graphs with fixed-budget performance data for two
modular algorithm frameworks, modCMA and modDE. On
top of that, a performance prediction model was proposed
using the derived knowledge graphs, leading to explainable
predictions of different modular algorithm configurations.

V. RESEARCH OUTLOOK

The list of works mentioned above is not meant to be
exhaustive. As the XAI field is rapidly growing, it is likely
that more studies based on EC aimed at achieving XAI will
appear in the near future. For instance, we believe that ever
more studies will focus on hybrid systems, e.g., combining
EC-induced interpretable models and black-box models for
feature extraction and low-level data manipulation. Such a
combination has the potential to leverage the benefit of both
areas of ML, and fully exploit the exploration capabilities that
represent a unique feature of EC.

A. Challenges

One major challenge for evolutionary approaches to XAI
(but faced to some extent by any XAI method) is scalability.
As data continues to grow and ML models become increas-
ingly more complex, the number of parameters and features
to be optimized grows as well. On the one hand, methods
that work well on small models and datasets may become too
expensive on larger ones. On the other hand, large models
are the most opaque and most in need of explanation, so
improving the scalability of XAI methods is necessary to
ensure they can be applied to even the largest models. In
particular, producing fully interpretable global explanations
that accurately capture model behavior while being simple
enough to understand may become too challenging as models
become larger – necessitating more local explanations or a
more focused approach concentrating on explaining particular
properties or components of the model. Here, too, we see the
potential for more use of automated approaches to explainabil-
ity – for example, by using evolutionary search to find local
explanations of interest and optimize for particular properties.
This idea has been explored with counterfactual examples, but
it could be extended to other types of explanations. In any
case, evolutionary ML has proposed a broad range of scaling-
up mechanisms over the years [191] that, to some extent, can
also be applied to EC-based XAI methods.

Another challenge for all kinds of XAI methods is the
incorporation of domain knowledge. This can include knowl-
edge from subject matter experts as well as prior knowledge
about the dataset or problem. Current approaches to XAI are
broad and aim to provide explanations that are independent
of the problem setting or, at most, are model-specific rather
than problem-specific. However, it can be useful to see how
well a solution found by an ML model aligns with current
knowledge in the field to evaluate the quality of the solution
or, conversely, to identify areas where the model deviates from
current understanding. For example, a practitioner may want
to see how well the gene associations found by a genomics
model align with the literature and which associations are
novel. This domain knowledge can be provided in the form
of expert rules, constraints, or structured data, such as a graph
structure or a tree from which metrics can be defined for
model evaluation. Domain knowledge can also be incorporated
into the model-building process to improve interpretability, for
instance, by constraining the models to focus on associations
known to be plausible (e.g., by incorporating causality) or
excluding irrelevant features. We believe that EC methods are
particularly suited for effectively leveraging domain knowl-
edge for building better models because of (1) their global
search capacity enabling robust and complex optimization
processes, (2) the possibility of hybridizing them with local
search mechanisms tailored to exploit domain knowledge, and
(3) their flexibility in exploration mechanisms, which provide
yet more opportunities to use the domain knowledge.

B. Opportunities

We see some additional opportunities for future work em-
ploying EC for XAI. One promising direction in current
research is the use of multiple objectives to optimize explana-
tions. Explainability is inherently a multi-objective problem,
requiring the explanation to be both faithful to the ML model
and simple enough to be interpretable. EC is well-suited to
explicitly optimizing for this. Thus, we believe introducing
these ideas into current and future explanation methods can be
a straightforward but effective way of improving the quality
of explanations.

Along similar lines, diversity metrics and novelty search are
another unique strength available to evolutionary algorithms
that can help improve the explanations provided. The use
of quality-diversity (illumination) algorithms can produce a
range of explanations that are both accurate and provide
different perspectives on the model’s behavior. For example,
a quality-diversity approach to counterfactual explanations
could ensure that a range of behaviors are showcased in the
examples. Existing work [192]–[194] has already shown some
explanatory value of search space illumination for optimization
problems, but there are still many opportunities to identify
ways to interpret and analyze sets of solutions to better
support decision-making. New approaches to visualization,
interactivity, and sensitivity analysis on solutions will all add
to the XAI picture for EC.

Another opportunity for EC – both in the EC for XAI and
XAI for EC settings – is the incorporation of user feedback,

15

considering the evolution of explanations as an open-ended
evolution process. Explainability is intended for the human
user, and, as such, explanation quality is ultimately subjective
and can only be approximated by metrics. Users may also have
their own unique preferences for what constitutes a useful
explanation. Incorporating user feedback into the evolution
process can allow better-tailored explanations that continue
to improve. At the same time, better metrics measuring an
explanation’s quality are also necessary to avoid overwhelm-
ing the user. The design of new operators and algorithmic
approaches that explicitly generate explanations as part of the
search would also be an interesting direction for future EC.

C. Real-world Impacts
As AI becomes increasingly integrated into real-world ap-

plications, developing better methods for providing explana-
tions is essential for ensuring safety and trust across various
domains. With this in mind, it is also crucial to consider the
practical effects and benefits that XAI research can have. We
would like to highlight here a few application areas where
work on evolutionary approaches to XAI can have a substantial
impact.

Healthcare is a domain where the consequences of errors
can be especially high. Untrusted models may be ignored by
clinicians, wasting resources and providing no benefit. Even
worse, seemingly trustworthy but flawed models may cause
harm to patients. Even models with few errors may exhibit
systematic biases, such as diagnostic models under-diagnosing
certain patient groups while appearing accurate [195]. Ex-
plainability can help identify these systematic errors and
biases [196]. AI models are employed in the financial sector
for fraud detection and risk assessment. Similar systematic
biases in these models can also be harmful, for example, by
disproportionately denying loans to certain groups. In addition,
regulatory bodies often require explanations for these models
to ensure compliance and maintain transparency.

Explainability also holds significant potential to advance
engineering and scientific discovery. AI models are used in
various engineering applications, such as AI-driven materials
design and drug discovery, and to produce scientific insights
in fields like genomics and astrophysics. Explanations can
offer insight into the underlying mechanisms and relation-
ships, improving hypothesis generation and validating domain
knowledge.

Natural language processing has experienced many recent
breakthroughs, with the development and deployment of mod-
els of unprecedented size. In particular, there is an emerging
paradigm of building “foundation models”, generalist deep
learning models that are trained on a wide range of data
for general capabilities and can be further fine-tuned for
downstream tasks [197]. These models can perform tasks
they are not specifically trained for, but it is still unclear
how they make decisions or generate outputs. Any flaws in
these foundation models may be carried over to application-
specific models built on top of them. As these models become
more pervasive and their applications expand, understanding
them and identifying their failure modes becomes increasingly
important.

VI. CONCLUSION

We have shown that there is a strong mutual connection
between XAI and EC. However, we believe that there are still
several research opportunities that have not been thoroughly
explored yet, which should mainly aim at: 1) devising tools,
be them analytical, visual, data-driven, model-based, etc., to
explain EC methods, i.e., their internal functioning, their re-
sults, and what properties/settings/instances make an algorithm
suitable for achieving the result; 2) defining how solutions
provided by EC methods should be checked and verified, and
evaluating how much problem knowledge is actually needed
to understand these solutions; and 3) fully exploiting the main
features of EC methods (e.g., their exploration of “illumi-
nation” capabilities) to either provide post-hoc explanations
(e.g., in the form of local explanations, or approximations
of black-box models) or generate white-box models that are
explainable by design. Another important challenge relates
to the connection between XAI and neuroevolution (and, in
general, neural architecture search): for instance, is there any
link between optimized architectures and explainability? (e.g.,
smaller networks may be easier to explain). We consider
these opportunities the basis for a potential bridge between
EC and general AI (where machine/deep learning is currently
mainstream) and believe that the EC community may play a
fundamental role in the promising research area of XAI.

Evidently, XAI is an emerging field with important impli-
cations for AI as a whole. With the increasing use of systems
built on ML and optimization in real-world applications, it is
more important than ever that we understand such systems
and what they learn. EC is well-poised to contribute to the
field, bringing a rich toolbox of tools for performing black-box
optimization. In this paper, we introduced various paradigms
for explaining an ML model and the current methods of
doing so. We then discussed how EC can fit into these
paradigms and the advantages of employing it. In particular,
EC as an optimizer is well suited for tricky interpretability
metrics that are difficult to handle due to reasons such as
non-differentiability, as well as for population-based metrics
such as diversity, and for optimizing a multitude of these
metrics at the same time. We highlighted a few methods in
each category that leverage some of these strengths. However,
there is still significant room for more exploration and more
advanced evolutionary algorithms.

To conclude, much knowledge remains locked away within
trained models that we still do not have the means to decipher.
The use of EC for XAI is still uncommon, but there are many
opportunities ripe for the picking, and we believe that it has
the potential to play a key part in the future of XAI.

REFERENCES

[1] Z.-G. Chen, Z.-H. Zhan, S. Kwong, and J. Zhang, “Evolutionary
computation for intelligent transportation in smart cities: A survey,”
IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 83–
102, 2022.

[2] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “In-
terpretable machine learning: definitions, methods, and applications,”
Proceedings of the National Academy of Sciences, vol. 116, no. 44, pp.
22 071–22 080, 2019.

16

[3] J. Bacardit, A. E. I. Brownlee, S. Cagnoni, G. Iacca, J. McCall,
and D. Walker, “The intersection of evolutionary computation and
explainable AI,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, ser. GECCO ’22. New York,
NY, USA: Association for Computing Machinery, Jul. 2022, pp. 1757–
1762.

[4] R. Zhou and T. Hu, “Evolutionary Approaches to Explainable Ma-
chine Learning,” in Handbook of Evolutionary Machine Learning,
W. Banzhaf, P. Machado, and M. Zhang, Eds. Singapore: Springer
Nature, 2024, pp. 487–506.

[5] J. Lehman, J. Clune, and D. Misevic, “The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary
computation and artificial life research communities,” pp. 274–306,
2020, arXiv:1803.03453.

[6] M. Virgolin, A. De Lorenzo, F. Randone, E. Medvet, and M. Wahde,
“Model learning with personalized interpretability estimation (ML-
PIE),” 2021, arXiv:2104.06060.

[7] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial intelligence, vol. 267, pp. 1–38, 2019.

[8] C. Ginet, “In defense of a non-causal account of reasons explanations,”
Journal of Ethics, vol. 12, pp. 229–237, 2008.

[9] H. Veatch, “Carl G. Hempel Aspects of Scientific Explanation and
Other Essays in the Philosophy of Science. New York: The Free Press,
1965. 505 pp.” Philosophy of Science, vol. 37, no. 2, pp. 312–314, Jun.
1970.

[10] D. Slack, S. Krishna, H. Lakkaraju, and S. Singh, “Explaining machine
learning models with interactive natural language conversations using
TalkToModel,” Nature Machine Intelligence, vol. 5, no. 8, pp. 873–883,
Aug. 2023.

[11] Z. C. Lipton, “The mythos of model interpretability,” Commun. ACM,
vol. 61, no. 10, pp. 36–43, 2018.

[12] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, pp. 206–215, 2019.

[13] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins et al.,
“Explainable Artificial Intelligence (XAI): Concepts, taxonomies, op-
portunities and challenges toward responsible AI,” Information Fusion,
vol. 58, pp. 82–115, 2020.

[14] T. Hu, “Genetic Programming for Interpretable and Explainable Ma-
chine Learning,” in Genetic Programming Theory and Practice XIX,
L. Trujillo, S. M. Winkler, S. Silva, and W. Banzhaf, Eds. Singapore:
Springer Nature, 2023, pp. 81–90.

[15] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux, “Model Inter-
pretability through the lens of Computational Complexity,” in Advances
in Neural Information Processing Systems, vol. 33. Curran Associates,
Inc., 2020, pp. 15 487–15 498.

[16] G. E. Hinton and D. Van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” in Proceedings of
the sixth annual conference on Computational learning theory, 1993,
pp. 5–13.

[17] B. Rylander, T. Soule, and J. Foster, “Computational complexity,
genetic programming, and implications,” in Genetic Programming: 4th
European Conference, EuroGP 2001 Lake Como, Italy, April 18–20,
2001 Proceedings 4. Springer, 2001, pp. 348–360.

[18] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,
Z. Wen, T. Shah, G. Morgan, and R. Ranjan, “Explainable AI (XAI):
Core Ideas, Techniques, and Solutions,” ACM Computing Surveys,
vol. 55, no. 9, pp. 194:1–194:33, Jan. 2023.

[19] W. Saeed and C. Omlin, “Explainable AI (XAI): A systematic meta-
survey of current challenges and future opportunities,” Knowledge-
Based Systems, vol. 263, p. 110273, Mar. 2023.

[20] J. Bacardit, “Pittsburgh genetics-based machine learning in the data
mining era: Representations, generalization, and run-time,” Ph.D. dis-
sertation, Ramon Llull University, Barcelona, Spain, 2004.

[21] J. Bacardit, E. K. Burke, and N. Krasnogor, “Improving the scalability
of rule-based evolutionary learning,” Memetic Computing, vol. 1, pp.
55–67, 2009.

[22] S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary
computation, vol. 3, no. 2, pp. 149–175, 1995.

[23] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Gold-
berg, S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W. Stolzmann
et al., “What is a learning classifier system?” in International Workshop
on Learning Classifier Systems. Cham: Springer, 1999, pp. 3–32.

[24] L. Bull, “Learning classifier systems: A brief introduction,” in Applica-
tions of learning classifier systems. Cham: Springer, 2004, pp. 1–12.

[25] L. Bull and T. Kovacs, “Foundations of learning classifier systems: An
introduction,” in Foundations of Learning Classifier Systems. Cham:
Springer, 2005, pp. 1–17.

[26] R. J. Urbanowicz and J. H. Moore, “Exstracs 2.0: description and evalu-
ation of a scalable learning classifier system,” Evolutionary intelligence,
vol. 8, no. 2, pp. 89–116, 2015.

[27] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning
classifier systems: Models, analysis and applications to classification
tasks.” Evolutionary Computation, vol. 11, no. 3, pp. 209–238, 2003.

[28] X. Llora and J. M. Garrell, “Evolution of decision trees,” in Catalan
Conference on Artificial Intelligence. ACIA Press, 2001, pp. 115–122.

[29] M. V. Butz, “Kernel-based, ellipsoidal conditions in the real-valued
XCS classifier system,” in Proc. Genetic Evol. Comput. Conf., GECCO
2005. New York, NY, USA: ACM, 2005, pp. 1835–1842.

[30] W. La Cava, P. Orzechowski, B. Burlacu, F. O. de França, M. Virgolin,
Y. Jin, M. Kommenda, and J. H. Moore, “Contemporary symbolic
regression methods and their relative performance,” arXiv preprint
arXiv:2107.14351, 2021.

[31] W. B. Langdon, “Fitness causes bloat in variable size representations,”
University of Birmingham, School of Computer Science, Tech. Rep.
CSRP-97-14, 1997, position paper at the Workshop on Evolutionary
Computation with Variable Size Representation at ICGA-97.

[32] J. Bacardit and J. M. Garrell, “Bloat control and generalization pres-
sure using the minimum description length principle for a pittsburgh
approach learning classifier system,” in Learning Classifier Systems,
Revised Selected Papers of the International Workshop on Learning
Classifier Systems 2003-2005. Springer-Verlag, LNCS 4399, 2007,
pp. 59–79.

[33] X. Llora, D. E. Goldberg, I. Traus, and E. Bernadó, “Accuracy,
parsimony, and generality in evolutionary learning systems via multi-
objective selection,” in Learning Classifier Systems: 5th International
Workshop, IWLCS 2002, Granada, Spain, September 7-8, 2002. Re-
vised Papers 5. Springer, 2003, pp. 118–142.

[34] J. Bacardit and N. Krasnogor, “Performance and efficiency of memetic
pittsburgh learning classifier systems,” Evolutionary Computation Jour-
nal, vol. 17, no. 3, p. in press, 2009.

[35] D. A. Calian and J. Bacardit, “Integrating memetic search into the
biohel evolutionary learning system for large-scale datasets,” Memetic
Computing, vol. 5, pp. 95–130, 2013.

[36] M. A. Franco, N. Krasnogor, and J. Bacardit, “Post-processing opera-
tors for decision lists,” in Proceedings of the 14th annual conference
on Genetic and evolutionary computation, 2012, pp. 847–854.

[37] M. Butz, P. Lanzi, and S. Wilson, “Function approximation with XCS:
Hyperellipsoidal conditions, recursive least squares, and compaction,”
Evolutionary Computation, IEEE Transactions on, vol. 12, no. 3, pp.
355–376, 2008.

[38] S. W. Wilson, “Compact rulesets from XCSI,” in Revised Papers from
the 4th International Workshop on Advances in Learning Classifier
Systems. Springer-Verlag, 2002, pp. 197–210.

[39] H. Shang, J.-L. Wu, W. Hong, and C. Qian, “Neural Network Pruning
by Cooperative Coevolution,” May 2022.

[40] R. Zhou and T. Hu, “Evolving Better Initializations For Neural Net-
works With Pruning,” in Proceedings of the Companion Conference on
Genetic and Evolutionary Computation, ser. GECCO ’23 Companion.
New York, NY, USA: Association for Computing Machinery, Jul. 2023,
pp. 703–706.

[41] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for rein-
forcement learning by genetic programming,” Engineering Applications
of Artificial Intelligence, vol. 76, pp. 158–169, 2018.

[42] L. L. Custode and G. Iacca, “Evolutionary learning of interpretable
decision trees,” 2020, arXiv:2012.07723.

[43] ——, “A co-evolutionary approach to interpretable reinforcement learn-
ing in environments with continuous action spaces,” in Symposium
Series on Computational Intelligence (SSCI). New York, NY, USA:
IEEE, 2021, pp. 1–8.

[44] ——, “Interpretable AI for policy-making in pandemics,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
Companion, ser. GECCO ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1763–1769.

[45] ——, “Interpretable pipelines with evolutionary optimized modules for
reinforcement learning tasks with visual inputs,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion, 2022,
pp. 224–227.

[46] ——, “Social interpretable reinforcement learning,” arXiv preprint
arXiv:2401.15480, 2024.

17

[47] A. Ferigo, L. L. Custode, and G. Iacca, “Quality diversity evolutionary
learning of decision trees,” in Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, 2023, pp. 425–432.

[48] ——, “Quality–diversity optimization of decision trees for interpretable
reinforcement learning,” Neural Computing and Applications, pp. 1–12,
2023.

[49] M. Crespi, A. Ferigo, L. L. Custode, and G. Iacca, “A population-based
approach for multi-agent interpretable reinforcement learning,” Applied
Soft Computing, vol. 147, p. 110758, 2023.

[50] M. Galende, G. Sainz, and M. J. Fuente, “Accuracy-interpretability
balancing in fuzzy models based on multiobjective genetic algorithm,”
in 2009 European Control Conference (ECC). New York, NY, USA:
IEEE, 2009, pp. 3915–3920.

[51] M. Virgolin, E. Medvet, T. Alderliesten, and P. A. Bosman, “Less is
more: A call to focus on simpler models in genetic programming for
interpretable machine learning,” 2022.

[52] W. La Cava and J. H. Moore, “Genetic programming approaches to
learning fair classifiers,” in Genetic and Evolutionary Computation
Conference. New York, NY, USA: ACM, 2020, pp. 967–975.

[53] R. J. Urbanowicz, A. Granizo-Mackenzie, and J. H. Moore, “An
analysis pipeline with statistical and visualization-guided knowledge
discovery for michigan-style learning classifier systems,” IEEE com-
putational intelligence magazine, vol. 7, no. 4, pp. 35–45, 2012.

[54] Y. Liu, W. N. Browne, and B. Xue, “Visualizations for rule-based
machine learning,” Natural Computing, vol. 1, pp. 1–22, 2021.

[55] K. Pearson, “LIII. On lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, Nov.
1901.

[56] H. Hotelling, “Analysis of a complex of statistical variables into
principal components,” Journal of Educational Psychology, vol. 24,
pp. 417–441, 1933.

[57] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605,
2008.

[58] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, 1996, pp. 226–231.

[59] A. Lensen, B. Xue, and M. Zhang, “Genetic programming for evolving
a front of interpretable models for data visualization,” IEEE Transac-
tions on Cybernetics, vol. 51, no. 11, pp. 5468–5482, 2021.

[60] F. Schofield and A. Lensen, “Using Genetic Programming to Find
Functional Mappings for UMAP Embeddings,” in 2021 IEEE Congress
on Evolutionary Computation (CEC), Jun. 2021, pp. 704–711.

[61] I. Icke and A. Rosenberg, “Multi-objective Genetic Programming for
Visual Analytics,” in Genetic Programming, ser. Lecture Notes in
Computer Science, S. Silva, J. A. Foster, M. Nicolau, P. Machado, and
M. Giacobini, Eds. Berlin, Heidelberg: Springer, 2011, pp. 322–334.

[62] A. Cano, S. Ventura, and K. J. Cios, “Multi-objective genetic program-
ming for feature extraction and data visualization,” Soft Computing,
vol. 21, no. 8, pp. 2069–2089, Apr. 2017.

[63] A. Lensen, B. Xue, and M. Zhang, “Genetic programming for manifold
learning: Preserving local topology,” IEEE Transactions on Evolution-
ary Computation, vol. early access, 2021.

[64] S. Sayed, M. Nassef, A. Badr, and I. Farag, “A Nested Genetic
Algorithm for feature selection in high-dimensional cancer Microarray
datasets,” Expert Systems with Applications, vol. 121, pp. 233–243,
May 2019.

[65] Z. Sha, T. Hu, and Y. Chen, “Feature Selection for Polygenic Risk
Scores using Genetic Algorithm and Network Science,” in 2021 IEEE
Congress on Evolutionary Computation (CEC), Jun. 2021, pp. 802–
808.

[66] Y. Xue, Y. Tang, X. Xu, J. Liang, and F. Neri, “Multi-Objective Feature
Selection With Missing Data in Classification,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 6, no. 2, pp. 355–
364, Apr. 2022.

[67] T. Hu, “Can genetic programming perform explainable machine learn-
ing for bioinformatics?” in Genetic Programming Theory and Practice
XVII. Springer, 2020.

[68] T. Hu, K. Oksanen, W. Zhang, E. Randell, A. Furey, G. Sun, and
G. Zhai, “An evolutionary learning and network approach to identify-
ing key metabolites for osteoarthritis,” PLoS Computational Biology,
vol. 14, no. 3, p. e1005986, 2018.

[69] C. Sha, M. Cuperlovic-Culf, and T. Hu, “SMILE: systems
metabolomics using interpretable learning and evolution,” BMC Bioin-
formatics, vol. 22, p. 284, 2021.

[70] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A Survey on
Evolutionary Computation Approaches to Feature Selection,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 4, pp. 606–
626, Aug. 2016.

[71] Y. Xue, B. Xue, and M. Zhang, “Self-adaptive particle swarm opti-
mization for large-scale feature selection in classification,” ACM Trans.
Knowl. Discov. Data, vol. 13, no. 5, pp. 50:1–50:27, 2019.

[72] B. H. Nguyen, B. Xue, and M. Zhang, “A survey on swarm intel-
ligence approaches to feature selection in data mining,” Swarm and
Evolutionary Computation, vol. 54, p. 100663, May 2020.

[73] E. Hancer, B. Xue, and M. Zhang, “A survey on feature selection
approaches for clustering,” Artificial Intelligence Review, vol. 53, no. 6,
pp. 4519–4545, 2020.

[74] W. La Cava and J. H. Moore, “Learning feature spaces for regression
with genetic programming,” Genetic Programming and Evolvable
Machines, vol. 21, no. 3, pp. 433–467, Sep. 2020.

[75] Z. Li, J. He, X. Zhang, H. Fu, and J. Qin, “Toward high accuracy
and visualization: An interpretable feature extraction method based
on genetic programming and non-overlap degree,” in Proceedings of
the IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), 2020, pp. 299–304.

[76] M. Muharram and G. Smith, “Evolutionary constructive induction,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17,
no. 11, pp. 1518–1528, Nov. 2005.

[77] M. Virgolin, T. Alderliesten, and P. A. N. Bosman, “On explaining
machine learning models by evolving crucial and compact features,”
Swarm and Evolutionary Computation, vol. 53, p. 100640, Mar. 2020.

[78] T. Uriot, M. Virgolin, T. Alderliesten, and P. A. N. Bosman, “On
genetic programming representations and fitness functions for inter-
pretable dimensionality reduction,” in Proceedings of the Genetic and
Evolutionary Computation Conference, ser. GECCO ’22. New York,
NY, USA: Association for Computing Machinery, Jul. 2022, pp. 458–
466.

[79] L. Breiman, “Random Forest,” Machine Learning, vol. 45, pp. 5–32,
2001.

[80] J. H. Friedman, “Multivariate adaptive regression splines,” The annals
of statistics, vol. 19, no. 1, pp. 1–67, 1991.

[81] A. Fisher, C. Rudin, and F. Dominici, “All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class
of prediction models simultaneously,” Journal of Machine Learning
Research, vol. 20, no. 177, pp. 1–81, 2019.

[82] J. Robertson, C. Stinson, and T. Hu, “A Bio-Inspired Framework for
Machine Bias Interpretation,” in Proceedings of the 2022 AAAI/ACM
Conference on AI, Ethics, and Society, ser. AIES ’22. New York, NY,
USA: Association for Computing Machinery, Jul. 2022, pp. 588–598.

[83] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’06. New York, NY,
USA: Association for Computing Machinery, Aug. 2006, pp. 535–541.

[84] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

[85] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable
& explorable approximations of black box models,” CoRR, vol.
abs/1707.01154, 2017.

[86] B. P. Evans, B. Xue, and M. Zhang, “What’s inside the black box?
a genetic programming method for interpreting complex machine
learning models,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), 2019, pp. 1012–1020.

[87] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[88] J. Bacardit, J. D. Hirst, M. Stout, J. Blazewicz, and N. Krasnogor,
“Coordination number prediction using learning classifier systems:
Performance and interpretability,” in Genetic and Evolutionary Com-
putation Conference. New York, NY, USA: ACM Press, 2006, pp.
247–254.

[89] N. Lazzarini, P. Widera, S. Williamson, R. Heer, N. Krasnogor, and
J. Bacardit, “Functional networks inference from rule-based machine
learning models,” BioData mining, vol. 9, no. 1, pp. 1–23, 2016.

[90] G. W. Bassel, E. Glaab, J. Marquez, M. J. Holdsworth, and J. Bacardit,
“Functional network construction in arabidopsis using rule-based ma-
chine learning on large-scale data sets,” The Plant Cell Online, vol. 23,
no. 9, pp. 3101–3116, Sep. 2011.

[91] S. Baron, N. Lazzarini, and J. Bacardit, “Characterising the influence
of rule-based knowledge representations in biological knowledge ex-
traction from transcriptomics data,” in European Conference on the

18

Applications of Evolutionary Computation. Cham: Springer, 2017,
pp. 125–141.

[92] H. D. Mettler, M. Schmidt, W. Senn, M. A. Petrovici, and J. Jordan,
“Evolving neuronal plasticity rules using cartesian genetic program-
ming,” 2021, arXiv:2102.04312.

[93] J. Jordan, M. Schmidt, W. Senn, and M. A. Petrovici, “Evolving to
learn: discovering interpretable plasticity rules for spiking networks,”
2020, arXiv:2005.14149.

[94] A. Yaman, G. Iacca, D. C. Mocanu, M. Coler, G. Fletcher, and M. Pech-
enizkiy, “Evolving plasticity for autonomous learning under changing
environmental conditions,” Evolutionary computation, vol. 29, no. 3,
pp. 391–414, 2021.

[95] Y. Tang, D. Nguyen, and D. Ha, “Neuroevolution of self-interpretable
agents,” in Genetic and Evolutionary Computation Conference. New
York, NY, USA: ACM, 2020, pp. 414–424.

[96] B. Wang, W. Pei, B. Xue, and M. Zhang, “A Multi-objective Genetic
Algorithm to Evolving Local Interpretable Model-agnostic Expla-
nations for Deep Neural Networks in Image Classification,” IEEE
Transactions on Evolutionary Computation, pp. 1–1, 2022.

[97] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R.
Müller, “Explaining deep neural networks and beyond: A review of
methods and applications,” Proc. IEEE, vol. 109, no. 3, pp. 247–278,
2021.

[98] T. Adel, Z. Ghahramani, and A. Weller, “Discovering Interpretable
Representations for Both Deep Generative and Discriminative Models,”
in Proceedings of the 35th International Conference on Machine
Learning. PMLR, Jul. 2018, pp. 50–59.

[99] N. Cammarata, S. Carter, G. Goh, C. Olah, M. Petrov, L. Schubert,
C. Voss, B. Egan, and S. K. Lim, “Thread: Circuits,” Distill, 2020.

[100] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann,
A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Gan-
guli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt,
K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish,
and C. Olah, “A mathematical framework for transformer circuits,”
Transformer Circuits Thread, 2021.

[101] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt, “Progress
measures for grokking via mechanistic interpretability,” Oct. 2023.

[102] M. Saletta and C. Ferretti, “A Grammar-based Evolutionary Approach
for Assessing Deep Neural Source Code Classifiers,” in 2022 IEEE
Congress on Evolutionary Computation (CEC), Jul. 2022, pp. 1–8.

[103] H. Bradley, H. Fan, T. Galanos, R. Zhou, D. Scott, and J. Lehman,
“The openelm library: Leveraging progress in language models for
novel evolutionary algorithms,” in Genetic Programming Theory and
Practice XX. Springer, 2024, pp. 177–201.

[104] S. J. Wetzel, “Closed-Form Interpretation of Neural Network Classifiers
with Symbolic Regression Gradients,” Jan. 2024.

[105] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[106] L. A. Ferreira, F. G. Guimarães, and R. Silva, “Applying genetic
programming to improve interpretability in machine learning models,”
in Proceedings of the IEEE Congress on Evolutionary Computation
(CEC), 2020, pp. 1–8.

[107] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and
F. Giannotti, “Local Rule-Based Explanations of Black Box Decision
Systems,” CoRR, vol. abs/1805.10820, 2018.

[108] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems (NeurIPS), 2017, pp. 4768–
4777.

[109] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

[110] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera, “A survey of al-
gorithmic recourse: Definitions, formulations, solutions, and prospects,”
CoRR, vol. abs/2010.04050, 2020.

[111] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual examples,” in ACM Confer-
ence on Fairness, Accountability, and Transparency, Jan. 2020.

[112] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” Found. Trends Mach. Learn., vol. 5, no. 2-3, pp. 123–286,
2012.

[113] S. Sharma, J. Henderson, and J. Ghosh, “CERTIFAI: A Common
Framework to Provide Explanations and Analyse the Fairness and
Robustness of Black-box Models,” in Proceedings of the AAAI/ACM

Conference on AI, Ethics, and Society. New York NY USA: ACM,
Feb. 2020, pp. 166–172.

[114] M. Schleich, Z. Geng, Y. Zhang, and D. Suciu, “GeCo: Quality
counterfactual explanations in real time,” Proceedings of the VLDB
Endowment, vol. 14, no. 9, pp. 1681–1693, May 2021.

[115] S. Dandl, C. Molnar, M. Binder, and B. Bischl, “Multi-Objective Coun-
terfactual Explanations,” in Parallel Problem Solving from Nature –
PPSN XVI, ser. Lecture Notes in Computer Science, T. Bäck, M. Preuss,
A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, Eds.
Cham: Springer International Publishing, 2020, pp. 448–469.

[116] R. Li, M. T. M. Emmerich, J. Eggermont, T. Bäck, M. Schütz,
J. Dijkstra, and J. H. C. Reiber, “Mixed integer evolution strategies
for parameter optimization,” Evolutionary Computation, vol. 21, no. 1,
pp. 29–64, 2013.

[117] C. Molnar, Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. leanpub.com, 2022.

[118] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp.
828–841, 2019.

[119] H. Qiu, L. L. Custode, and G. Iacca, “Black-box adversarial attacks
using evolution strategies,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, 2021, pp. 1827–1833.

[120] L. L. Custode and G. Iacca, “One run to attack them all: finding
simultaneously multiple targeted adversarial perturbations,” in 2021
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2021, pp. 01–08.

[121] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. B. Srivastava, and
K.-W. Chang, “Generating natural language adversarial examples,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November
4, 2018, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds.
Association for Computational Linguistics, 2018, pp. 2890–2896.

[122] W. Huang, X. Zhao, G. Jin, and X. Huang, “SAFARI: Versatile and
efficient evaluations for robustness of interpretability,” CoRR, vol.
abs/2208.09418, 2022.

[123] S. V. Tamam, R. Lapid, and M. Sipper, “Foiling explanations in deep
neural networks,” CoRR, vol. abs/2211.14860, 2022.

[124] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test
problems for evolutionary multiobjective optimization,” in Evolutionary
multiobjective optimization: theoretical advances and applications.
Springer, 2005, pp. 105–145.

[125] D. J. Walker, “Visualisation with treemaps and sunbursts in many-
objective optimisation,” Genetic Programming and Evolvable Ma-
chines, vol. 19, no. 3, pp. 421–452, 2018.

[126] E. Medvet, M. Virgolin, M. Castelli, P. A. Bosman, I. Gonçalves,
and T. Tušar, “Unveiling evolutionary algorithm representation with du
maps,” Genetic Programming and Evolvable Machines, vol. 19, no. 3,
pp. 351–389, 2018.

[127] M. Chromik and M. Schuessler, “A Taxonomy for Human Sub-
ject Evaluation of Black-Box Explanations in XAI.” Exss-atec@ iui,
vol. 94, 2020.

[128] Q. V. Liao, D. Gruen, and S. Miller, “Questioning the ai: informing
design practices for explainable ai user experiences,” in Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–15.

[129] D. Gunning, E. Vorm, J. Y. Wang, and M. Turek, “DARPA’s explainable
AI (XAI) program: A retrospective,” p. e61, 2021.

[130] M. Fischetti, M. Fischetti et al., “Matheuristics,” in Handbook of
heuristics. Springer International Publishing, 2018, vol. 1, pp. 121–
153.

[131] M. Goerigk and M. Hartisch, “A framework for inherently interpretable
optimization models,” European Journal of Operational Research, vol.
310, no. 3, pp. 1312–1324, 2023.

[132] K. Deb, “An efficient constraint handling method for genetic algo-
rithms,” Computer methods in applied mechanics and engineering, vol.
186, no. 2-4, pp. 311–338, 2000.

[133] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[134] T. Helmuth, L. Spector, and J. Matheson, “Solving uncompromising
problems with lexicase selection,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 5, pp. 630–643, 2014.

[135] Q. Xu, Z. Xu, and T. Ma, “A survey of multiobjective evolutionary
algorithms based on decomposition: variants, challenges and future
directions,” IEEE Access, vol. 8, pp. 41 588–41 614, 2020.

19

[136] J. G. Falcón-Cardona and C. A. C. Coello, “Indicator-based multi-
objective evolutionary algorithms: A comprehensive survey,” ACM
Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–35, 2020.

[137] Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary
algorithms for multi-objective optimization problems with irregular
pareto fronts,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2,
pp. 303–318, 2021.

[138] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artificial life,
vol. 15, no. 2, pp. 185–212, 2009.

[139] D. B. D’Ambrosio, J. Gauci, and K. O. Stanley, “Hyperneat: The first
five years,” Growing Adaptive Machines: Combining Development and
Learning in Artificial Neural Networks, pp. 159–185, 2014.

[140] T. Nyathi and N. Pillay, “Comparison of a genetic algorithm to
grammatical evolution for automated design of genetic programming
classification algorithms,” Expert Systems with Applications, vol. 104,
pp. 213–234, 2018.

[141] D. Whitley, F. Chicano, and B. Goldman, “Gray Box Optimization for
Mk Landscapes,” Evolutionary Comput., vol. 24, no. 3, pp. 491–519,
2016.

[142] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[143] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Springer Science & Business
Media, 2001, vol. 2.

[144] J. Ceberio, A. Mendiburu, and J. A. Lozano. (2011, May) Estimation
of distribution algorithms for permutation-based problems. Intelligent
Systems Group, Department of Computer Science and Artificial Intel-
ligence, The University of the Basque Country.

[145] M. Hauschild and M. Pelikan, “An introduction and survey of estima-
tion of distribution algorithms,” Swarm Evol. Comput., vol. 1, no. 3,
pp. 111 – 128, 2011.

[146] J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Towards a New
Evolutionary Computation: Advances on Estimation of Distribution
Algorithms (Studies in Fuzziness and Soft Computing). Springer-
Verlag, 2006.

[147] K. M. Malan, “A Survey of Advances in Landscape Analysis for
Optimisation,” Algorithms, vol. 14, no. 2, p. 40, Jan. 2021.

[148] R. Trajanov, S. Dimeski, M. Popovski, P. Korošec, and T. Eftimov,
“Explainable landscape-aware optimization performance prediction,” in
Symposium Series on Computational Intelligence. New York, NY,
USA: IEEE, 2021, pp. 01–08.

[149] ——, “Explainable landscape analysis in automated algorithm perfor-
mance prediction,” 2022, arXiv:2203.11828.

[150] G. Ochoa, K. M. Malan, and C. Blum, “Search trajectory networks:
A tool for analysing and visualising the behaviour of metaheuristics,”
Applied Soft Computing, vol. 109, p. 107492, 2021.

[151] M. Fyvie, J. A. W. McCall, and L. A. Christie, “Towards Explainable
Metaheuristics: PCA for Trajectory Mining in Evolutionary Algo-
rithms,” in Artificial Intelligence XXXVIII, M. Bramer and R. Ellis,
Eds. Cham: Springer International Publishing, 2021, pp. 89–102.

[152] G. Cenikj, G. Petelin, C. Doerr, P. Korošec, and T. Eftimov, “Dy-
namoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems,” in Proceedings of the Genetic and
Evolutionary Computation Conference, ser. GECCO ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 813–821.

[153] M. J. Walter, D. J. Walker, and M. J. Craven, “An explainable
visualisation of the evolutionary search process,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 1794–1802.

[154] A. Wallace, A. E. I. Brownlee, and D. Cairns, “Towards explaining
metaheuristic solution quality by data mining surrogate fitness mod-
els for importance of variables,” in Artificial Intelligence XXXVIII,
M. Bramer and R. Ellis, Eds. Cham: Springer International Publishing,
2021, pp. 58–72.

[155] M. Singh, A. E. I. Brownlee, and D. Cairns, “Towards explainable
metaheuristic: Mining surrogate fitness models for importance of vari-
ables,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, ser. GECCO ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1785–1793.

[156] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in
selection hyper-heuristics,” European Journal of Operational Research,
vol. 285, no. 2, pp. 405–428, 2020.

[157] S. K. Smit and A. Eiben, “Parameter tuning of evolutionary algorithms:
Generalist vs. specialist,” in European Conference on the Applications

of Evolutionary Computation. Berlin, Heidelberg: Springer, 2010, pp.
542–551.

[158] R. Ugolotti, L. Sani, and S. Cagnoni, “What can we learn from multi-
objective meta-optimization of evolutionary algorithms in continuous
domains?” Mathematics, vol. 7, no. 3, p. 232, 2019.

[159] N. Urquhart, “Combining parallel coords with multi-objective evolut
algorithms in a real-world optimisation problem,” in Genetic and
Evolutionary Computation Conference. New York, NY, USA: ACM,
07 2017, pp. 1335–1340.

[160] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” 2015.

[161] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-efficient exploration, op-
timization, and modeling of diverse designs through surrogate-assisted
illumination,” in Genetic and Evolutionary Computation Conference.
New York, NY, USA: ACM, 2017, pp. 99–106.

[162] K. Miettinen and M. M. Mäkelä, “Interactive multiobjective optimiza-
tion system www-nimbus on the internet,” Computers & Operations
Research, vol. 27, no. 7-8, pp. 709–723, 2000.

[163] N. Urquhart, M. Guckert, and S. Powers, “Increasing trust in meta-
heuristics using MAP-elites,” in Genetic and Evolutionary Computation
Conference - Companion, ser. GECCO ’19. New York, NY, USA:
ACM, 2019, pp. 1345–1348.

[164] N. Urquhart, S. Höle, and E. Hart, “Automated, explainable rule
extraction from MAP-Elites archives,” in Proc. EvoApplications 2021,
2021, pp. 258–272.

[165] W. T and S. J, “Backbones in optimization and approximation,” in
IJCAI. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2001, pp. 254––259.

[166] M. Fyvie, J. A. W. McCall, L. A. Christie, A.-C. Zăvoianu, A. E. I.
Brownlee, and R. Ainslie, “Explaining a Staff Rostering Problem
by Mining Trajectory Variance Structures,” in Artificial Intelligence
XL: 43rd SGAI International Conference on Artificial Intelligence, AI
2023, Cambridge, UK, December 12–14, 2023, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2023, p. 275–290.

[167] T. M. Banda, A.-C. Zăvoianu, A. Petrovski, D. Wöckinger, and
G. Bramerdorfer, “A multi-objective evolutionary approach to discover
explainability tradeoffs when using linear regression to effectively
model the dynamic thermal behaviour of electrical machines,” ACM
Trans. Evol. Learn. Optim., vol. 4, no. 1, feb 2024.

[168] K. Deb and A. Srinivasan, “Innovization: Discovery of innovative
design principles through multiobjective evolutionary optimization,”
in Multiobjective Problem Solving from Nature: From Concepts to
Applications, J. Knowles et al., Eds. Berlin, Heidelberg: Springer,
2008, pp. 243–262.

[169] K. Deb, S. Bandaru, D. Greiner, A. Gaspar-Cunha, and C. C. Tutum,
“An integrated approach to automated innovization for discovering
useful design principles: Case studies from engineering,” Applied Soft
Computing, vol. 15, pp. 42–56, 2014.

[170] R. J. Scholman, A. Bouter, L. R. Dickhoff, T. Alderliesten, and P. A.
Bosman, “Obtaining smoothly navigable approximation sets in bi-
objective multi-modal optimization,” 2022, arXiv:2203.09214.

[171] A. Inselberg and B. Dimsdale, “Parallel coordinates,” Human-Machine
Interactive Systems, pp. 199–233, 2009.

[172] N. B. Urquhart, “Evaluating the performance of an evolutionary tool
for exploring solution fronts,” in Applications of Evolutionary Compu-
tation: 21st International Conference, EvoApplications 2018, Parma,
Italy, April 4-6, 2018, Proceedings 21. Springer, 2018, pp. 523–537.

[173] A. Pryke, S. Mostaghim, and A. Nazemi, “Heatmap visualization of
population based multi objective algorithms,” in Evolutionary Multi-
Criterion Optimization: 4th International Conference, EMO 2007,
Matsushima, Japan, March 5-8, 2007. Proceedings 4. Springer, 2007,
pp. 361–375.

[174] R. J. Lygoe, M. Cary, and P. J. Fleming, “A real-world application
of a many-objective optimisation complexity reduction process,” in
Evolutionary Multi-Criterion Optimization, R. C. Purshouse, P. J.
Fleming, C. M. Fonseca, S. Greco, and J. Shaw, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 641–655.

[175] D. J. Walker, R. Everson, and J. E. Fieldsend, “Visualizing mutually
nondominating solution sets in many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 2, pp. 165–
184, 2013.

[176] I. Jolliffe, Principal Component Analysis. Springer, 2002.
[177] T. Kohonen, Self-Organising Maps. Springer, 1995.
[178] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE

Transactions on computers, vol. 100, no. 5, pp. 401–409, 1969.

20

[179] R. M. Everson, D. J. Walker, and J. E. Fieldsend, “Life on the
Edge: Characterising the Edges of Mutually Non-dominating Sets,”
Evolutionary Computation, vol. 22, no. 3, pp. 479–501, 09 2014.

[180] A. V. Kononova, D. W. Corne, P. De Wilde, V. Shneer, and F. Caraffini,
“Structural bias in population-based algorithms,” Information Sciences,
vol. 298, pp. 468–490, 2015.

[181] D. Vermetten, F. Ye, and C. Doerr, “Using affine combinations of
bbob problems for performance assessment,” in Proceedings of the
Genetic and Evolutionary Computation Conference, ser. GECCO ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
873–881.

[182] D. Vermetten, F. Ye, T. Bäck, and C. Doerr, “Ma-bbob: Many-affine
combinations of bbob functions for evaluating automl approaches in
noiseless numerical black-box optimization contexts,” in International
Conference on Automated Machine Learning. PMLR, 2023, pp. 7–1.

[183] D. Vermetten, B. van Stein, F. Caraffini, L. L. Minku, and A. V.
Kononova, “Bias: A toolbox for benchmarking structural bias in the
continuous domain,” IEEE Transactions on Evolutionary Computation,
vol. 26, no. 6, pp. 1380–1393, 2022.

[184] D. Vermetten, F. Caraffini, B. van Stein, and A. V. Kononova, “Us-
ing structural bias to analyse the behaviour of modular cma-es,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2022, pp. 1674–1682.

[185] B. Van Stein, D. Vermetten, F. Caraffini, and A. V. Kononova, “Deep
bias: Detecting structural bias using explainable ai,” in Proceedings of
the Companion Conference on Genetic and Evolutionary Computation,
2023, pp. 455–458.

[186] N. van Stein, D. Vermetten, A. V. Kononova, and T. Bäck, “Explainable
benchmarking for iterative optimization heuristics,” arXiv preprint
arXiv:2401.17842, 2024.

[187] A. Nikolikj, A. Kostovska, D. Vermetten, C. Doerr, and T. Eftimov,
“Quantifying individual and joint module impact in modular optimiza-
tion frameworks,” 2024, arXiv:2405.11964.

[188] A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and
T. Eftimov, “Option: optimization algorithm benchmarking ontology,”
in Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, 2021, pp. 239–240.

[189] A. Yaman, A. Hallawa, M. Coler, and G. Iacca, “Presenting the eco:
evolutionary computation ontology,” in European Conference on the
Applications of Evolutionary Computation. Springer, Cham, 2017,
pp. 603–619.

[190] A. Kostovska, D. Vermetten, S. Džeroski, P. Panov, T. Eftimov,
and C. Doerr, “Using knowledge graphs for performance prediction
of modular optimization algorithms,” in Applications of Evolutionary
Computation, J. Correia, S. Smith, and R. Qaddoura, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 253–268.

[191] J. Bacardit and X. Llorà, “Large-scale data mining using genetics-based
machine learning,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 3, no. 1, pp. 37–61, 2013.

[192] N. Urquhart, S. Höhl, and E. Hart, “Automated, explainable rule
extraction from MAP-elites archives,” in Applications of Evolutionary
Computation: 24th International Conference, EvoApplications 2021,
Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Pro-
ceedings 24. Springer, 2021, pp. 258–272.

[193] S. P. Walton, B. J. Evans, A. A. M. Rahat, J. Stovold, and J. Vincalek,
“Does mapping elites illuminate search spaces? A large-scale user
study of MAP–Elites applied to human–AI collaborative design,” 2024.

[194] H. Zhang, Q. Chen, B. Xue, W. Banzhaf, and M. Zhang, “MAP-Elites
for Genetic Programming-Based Ensemble Learning: An Interactive
Approach [AI-eXplained],” IEEE Computational Intelligence Maga-
zine, vol. 18, no. 4, pp. 62–63, 2023.

[195] L. Seyyed-Kalantari, H. Zhang, M. B. A. McDermott, I. Y. Chen, and
M. Ghassemi, “Underdiagnosis bias of artificial intelligence algorithms
applied to chest radiographs in under-served patient populations,”
Nature Medicine, vol. 27, no. 12, pp. 2176–2182, 2021.

[196] A. Arias-Duart, F. Parés, D. Garcia-Gasulla, and V. Gimenez-Abalos,
“Focus! Rating XAI methods and finding biases,” in IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE 2022, Padua, Italy, July 18-
23, 2022. IEEE, 2022, pp. 1–8.

[197] R. Bommasani, D. A. Hudson, E. Adeli, R. B. Altman, S. Arora,
S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill,
E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. S. Chatterji, A. S.
Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya,
E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei,
C. Finn, T. Gale, L. Gillespie, K. Goel, N. D. Goodman, S. Gross-
man, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho,
J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri,

S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S.
Krass, R. Krishna, R. Kuditipudi, and e. al., “On the opportunities and
risks of foundation models,” CoRR, vol. abs/2108.07258, 2021.

	Introduction
	Explainable AI
	What is an explanation?
	Explainability and Interpretability
	Why EC and XAI?

	EC for XAI
	Explainability and Complexity
	Types of Explanations
	Interpretability by Design
	Explaining Data and Preprocessing
	Dimensionality reduction
	Feature selection and feature engineering

	Explaining Model Behavior
	Feature importance
	Global model approximations
	Domain-specific knowledge extraction from machine learning models
	Explaining neural networks

	Explaining Predictions
	Local explanations
	Counterfactuals
	Adversarial examples

	Assessing Explanations

	XAI for EC
	Interpretability by Design
	Explaining Problem Landscapes
	Landscape analysis and trajectories
	User-guided evolution

	Explaining Solutions
	Interpreting solutions
	Visualization of solutions

	Explaining optimizer behavior

	Research Outlook
	Challenges
	Opportunities
	Real-world Impacts

	Conclusion
	References

