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RWT schemes globally, and explore several options 
for improved RWT classification within the CBD 
framework—we recommend that the current corri-
dor category is modified slightly to accommodate the 
addition of RWTs as a distinct sub-category, as sepa-
rate from a clearly defined ‘navigable canal/artificial 
waterways’ sub-category. Accurate classification will 
increase understanding and awareness of this high-
risk pathway, and support much-needed insight into 
its distinct stakeholders and drivers. Further, delin-
eating RWTs from navigable canals/artificial water-
ways will help to identify widespread opportunities 
for pathway management and policy development, in 
addition to supporting more accurate future assess-
ments of the risks and economic costs of the corridor 
pathway category.

Keywords Invasion pathway · Spread · 
Classification · Infrastructure · Corridors · Water 
resources

Introduction

Invasive non-native species (INNS) are a major 
threat to ecosystems and a significant driver of bio-
diversity loss worldwide (Reid et  al. 2018). INNS 
are particularly damaging within freshwater habi-
tats, where increasing invasion rates are endanger-
ing endemic communities globally (Moorhouse and 
Macdonald 2014; Seebens et  al. 2020). Identifying, 

Abstract Raw Water Transfer (RWT) schemes 
move large volumes of freshwater between separate 
waterbodies to supply water as a specific commod-
ity. Water is translocated by complex purpose-built 
networks of pipelines, tunnels and water supply 
canals. RWTs form hydrological connections between 
waterbodies across various spatial scales, and create 
a pathway of introduction and spread for a diverse 
range of invasive non-native species (INNS). Though 
occurring globally in large numbers, RWTs are not 
currently well represented by the standard path-
way classification framework adopted by the Con-
vention on Biodiversity (CBD). At present, RWTs 
are included within the ‘corridor’ category, which 
denotes the natural spread of organisms to neighbour-
ing regions through transport infrastructure i.e. navi-
gable canals/artificial waterways. However, RWTs 
are not routes for vehicle transport, and species are 
translocated between often non-adjoining waterbod-
ies by the intentional transfer of water, not via natu-
ral spread. We provide a background for the complex 
RWT pathway and evidence of INNS spread through 
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understanding, and controlling the pathways of INNS 
dispersal to prevent novel introductions and limit the 
secondary spread of existing populations is there-
fore a key management strategy (Vander Zanden 
and Olden 2008), and a requirement of international 
legislation including the Convention on Biodiversity 
(CBD, 2022) (Target 6 of the Kunming-Montreal 
Global Biodiversity Framework CBD/COP/15/L.25, 
2022) and Article 13 of the EU IAS Regulation 
(1143/2014) (European Parliament 2014).

Invasion pathways can be complex, and it can be 
difficult to distinguish between similar or related 
pathways (Harrower et  al. 2018; Essl et  al. 2015). 
Pathway classification frameworks, such as that 
developed by Hulme et al. (2008) and adopted by the 
CBD (UNEP/CBD/SBSTTA/18/9/Add.1, 2014) as an 
international standard, are therefore useful tools for 
differentiating pathways based on key characteristics, 
such as the underlying introduction mechanism and 
degree of human interaction involved (Genovesi and 
Shine 2004). For example, within the CBD frame-
work, the movement of INNS by ships/boats can be 
described by three distinct sub-categories within the 
‘vector stowaway’ category—‘hitchhiking on ship’, 
‘ballast water’ and ‘hull fouling’ (Fig. 1). A separate 
‘vector contaminant’ category can also describe the 
transport of INNS-contaminated material by ships/
boats, with sub-categories including ‘transporta-
tion of habitat material’ and ‘contaminant nursery 
material’.

Both ’vector contaminants’ and ‘vector stowa-
ways’ categories can involve INNS introduction via 
the same mode of transport—however, the key dis-
tinction is that unlike ‘vector contaminants’, ‘vector 
stowaways’ are not associated with the movement of a 
specific commodity (Hulme et al. 2008).

Making these distinctions between related yet 
functionally different pathways is important, as it 
enables stakeholder identification, pathway prioritiza-
tion, policy development and targeted pathway man-
agement (McGeough et al. 2016; Pergyl et al. 2020). 
Improved pathway understanding also contributes to 
the wider study of invasion biology, as pathways can 
significantly influence the eventual success of intro-
duced organisms (Ruiz and Carlton 2003; Wilson 
et al. 2009).

Our knowledge of various pathways is still devel-
oping, and some complex pathways of secondary 
spread are missing or not well-represented by the 

current CBD framework (Faulker et al. 2020; IPBES 
2023a). One such pathway is the globally occurring 
Raw Water Transfer (RWT) pathway. RWT schemes 
are infrastructure systems designed specifically to 
move large volumes of freshwater from a donor 
waterbody (river, reservoir, natural/artificial water-
course) to a recipient waterbody, for the purpose of 
increasing water supply in a given area (Gohari et al. 
2013). Water is typically transferred via underground 
pipelines or tunnels, or water supply canals, which 
may create connections both within and between 
hydrological catchments.

RWTs can generate high levels of introduction 
pressure (Ellender and Weyl 2014) and have been 
linked to many cases of INNS introduction and 
spread worldwide (Kimberg et  al. 2014; Silva et  al. 
2020; Zhang et  al. 2022). Though not directly ref-
erenced within the current CBD framework (Waine 
et  al. 2023), RWTs have been linked to the ‘corri-
dor’ pathway category (Woodford et al. 2013; Hulme 
2015), because of the physical similarity between 
RWT water supply canals, and navigable canals. 
According to the CBD framework, corridors permit 
the natural spread of organisms from a neighbour-
ing region, through vehicle transportation infrastruc-
tures i.e. navigable canals (also known as waterways) 
with limited human intervention, and are not linked 
to a specific commodity (Hulme et  al. 2008; Hulme 
2015; CBD 2014; Harrower et  al. 2018). Under the 
current definition, the corridor category is ill-fitting 
for the RWT pathway for several key reasons: (1) 
RWTs are not routes for vehicle transport (2) species 
introduction and dispersal through infrastructure is a 
consequence of water movement between often dis-
tant waterbodies, not natural spread through adjoining 
routes (3) RWTs move water as a specific commodity.

As it currently stands, this categorisation of RWTs 
overlooks the mechanistic basis of INNS introduc-
tion and transfer between environments, and the sub-
sequent potential for management by defined stake-
holders, water resource managers (Table  1). Indeed, 
it is considered that RWTs have fallen within a gap 
in international regulatory frameworks (Miller et  al. 
2006; Shine 2007; Perrings 2010; Hulme 2015), 
presumably as natural spread through navigable 
canals is considered difficult to manage (Rahel 2007; 
Woodford et  al. 2013) and is not associated with a 
specific stakeholder. However, as recent RWT-spe-
cific management policies in England and Scotland 
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demonstrate, RWT management by stakeholders is 
possible and can be legislated for (Waine et al. 2023).

Climate change, human population growth and 
urbanization are exerting growing pressure on 

Fig. 1  The framework for “Categorization of pathways for the introduction of alien species” from Convention on Biological Diver-
sity 2014 (UNEP/CBD/SBSTTA/18/9/Add.1)
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freshwater resource availability, leading to a dramatic 
increase in the number of RWT schemes globally 
(Meador 1996; Kadye and Booth 2013). RWTs now 
support the water requirements of many towns and 
cities worldwide (Flörke et al. 2018) and the number 
is expected to grow rapidly, as current estimates sug-
gest that urban water demand will increase by 80% 
by 2050 (Kibiiy and Ndambuki 2015; Garrote 2017; 
Shumilova et al. 2018).

It is therefore important that the RWT pathway is 
correctly classified, to increase pathway awareness 

and develop the understanding needed for wide-
spread management. The aim of this review is to 
advocate for the classification of RWTs as a spe-
cific sub-category under a revised corridor category 
within the CBD framework. Specifically, by (1) pro-
viding an overview of the RWT pathway (2) provid-
ing an overview of the global evidence for INNS 
spread via RWT (3) describing the mechanistic 
basis of INNS introduction and spread via the RWT 
pathway, and how this differs from the current cor-
ridor category.

Table 1  Definitions and descriptions of key pathway terminology

Terminology Definition and description

Raw water transfer scheme Also known as ‘water transfer’, 
‘water diversion’, ‘water transmission’, ‘river transfer’, ‘river 
transposition’ and ‘bulk transfer’

Inter-basin raw water transfer

Large infrastructure network designed to move raw (untreated) 
freshwater from a donor waterbody to a recipient waterbody. 
Waterbodies typically include rivers and reservoirs

Water is typically transferred via underground pipelines or tunnels, 
or water supply canals

Transfer distances can vary, but donor and recipient waterbodies 
are often separated by significant distances and/or hydrological 
boundaries

Inter-basin’ describes RWTs that cross natural watersheds. The 
term is useful for illustrating potential transfer distance and the 
risk of INNS introduction into separate catchments. Note: 
intra-basin RWTs can also negatively impact habitats and may 
introduce INNS to otherwise inaccessible areas

Water supply canal Infrastructure created specifically to carry freshwater input from 
donor waterbody to a recipient waterbody, as part of a RWT 
scheme

Water supply canals are typically shallow, concrete lined struc-
tures, constructed to maximise the efficiency of water flow

Water supply canals are not typically used for vessel transport, and 
do not permit public access/recreational use

Water supply canals often form a part of a wider complex network 
of a RWT scheme that is overseen by water resource managers

Initial INNS introduction to water supply canal likely results from 
the transfer of water from a donor waterbody 

Further INNS spread along water supply canals can come from 
mechanical pumping of water through dams/barriers, or via 
natural spread

Navigable canal (also known as waterways) Transportation infrastructure which allows the movement of ves-
sels along adjoining routes

Navigable canals may contain freshwater, or create transport 
routes between isolated marine waters e.g. the Suez Canal

Navigable canals are often used for recreation (e.g. kayaking) and 
angling

Initial INNS introduction occurs via natural spread from adjoining 
waterways (also potentially through hull fouling/ballast water/
recreation), and further spread along a route is autonomous

Water resource Those tasked with developing and managing water resources to 
maintain water supply for human use

Management is typically carried out by local/state/central govern-
ments, or by private industry in conjunction with regulators
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Overview of raw water transfer pathway

Scale and impacts

A single RWT can translocate hundreds of millions of 
litres of water per day. The collective volume trans-
ferred by RWTs at regional/national levels can be 
hugely significant. In North America for example, 
over 615 inter-basin RWTs are present. Of the 192 
RWTs for which flow data is available, 24.9   km3 of 
water is transferred annually (Siddick et al. 2023).

RWT can significantly impact donor and recipi-
ent waterbodies in numerous ways (Snaddon et  al. 
1999; Gupta and van der Zaag 2008). Water loss from 
donors can alter natural flows and cause localised 
drought (Ghassemi and White 2007), and recipient 
waterbodies can be impacted by pronounced changes 
in water flow and velocity leading to flooding, chan-
nel erosion and sediment deposition, in addition to 
changes in water temperature, chemistry, turbidity, 
and pollutant concentration (Boon 1987, 1988; Gal-
lardo and Aldridge 2018; Bui et  al. 2020). Water 
input can also change the nature of recipient habi-
tats—the majority of water flow within a recipient 
river can be input from a donor waterbody (Dynesius 
and Nilsson 1994; Snaddon et  al. 1998), enough to 
transform irregular, seasonal rivers to fast-flowing 
perennial rivers (O’Keefe and DeMoor 1988).

RWT infrastructure

Individual RWT schemes can take different forms 
(see Davies et  al. 1992; Snaddon et  al. 1998), and 
wider network composition may vary between coun-
tries/regions; reflecting local water availability, 
requirements and stakeholder practices (Lund and 
Israel 1995). For example, in England and Wales, 
subterranean pipes and tunnels are typically used to 
convey water across large distances. In contrast, Chi-
na’s South-North scheme, the world’s largest RWT, 
uses purpose-built water supply canals as the main 
route of movement, though pipelines and tunnels are 
also part of the wider network (Rogers et  al. 2019). 
RWT infrastructure can operate at multiple geo-
graphic scales, from relatively local transfers to those 
hundreds of kilometres long, in some cases crossing 
national borders (Zhang 2009; Prasad et al. 2012).

In large part, RWT infrastructure is purpose-built 
to maximise energy efficiency and reduce water 

losses incurred by transfer (Farias et  al. 2017). 
However in some cases, RWT systems will har-
ness parts of existing artificial waterways to convey 
water to an abstraction point.

Examples of RWT pathway dispersal

There is evidence of diverse invasive taxa spread via 
RWT schemes globally  (Table  2). Examples were 
gathered by searching the databases ‘NCBI’, ‘Web 
of Science’,‘google scholar’ and ‘ResearchGate’ 
using the terms ‘invasive’, ‘alien’, ‘non-native’, 
‘water transfers’ and ‘water diversion’ across all 
years. Many examples were also obtained via 
‘snow-balling’. Only examples pertaining to species 
movement within RWT networks were included, 
and not reports of natural spread via navigable 
canals (see Leuven et al. 2009; Galil et al. 2015).

Pathway classification

Current RWT classification

RWTs are not explicitly referenced in the CBD 
framework (Fig. 1) but are considered to fall within 
the corridor category (Woodford et al. 2013; Hulme 
2015). Corridors  permits the natural/autonomous 
spread of organisms from a neighbouring region 
through vehicle transport infrastructure—navigation 
canals (Hulme et  al. 2008; CBD 2014; Harrower 
et al. 2018) (Fig. 2).

Corridors relate only to the physical route cre-
ated by artificial transportation infrastructure and 
are not associated with a specific vector or com-
modity (Hulme 2009). As such, the water within 
the navigable canal is not a discrete vector of inva-
sion or a commodity purposefully moved—it is a 
medium for vehicle transit, which also supports 
the incremental colonisation and spread of aquatic 
species. As permanent structures, corridor-based 
dispersal events are considered to occur continu-
ously (Wilson et  al. 2009). Human involvement is 
minimal and no stakeholders are directly responsi-
ble for species introduction and movement through 
pathway infrastructure, beyond perhaps fouled boats 
(Hulme 2009).
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The RWT pathway – what is it not?

Enclosed RWT infrastructure (pipelines and tunnels) 
clearly differs from the corridor category as defined 
currently—it does not support vehicle transport, and 
has been specifically constructed to move water as a 
commodity.

Importantly, INNS introduction to recipient water-
bodies through pipes/tunnels is not due to natural 
movement to an adjoining habitat. Organisms are 
entrained by pumping stations or the pressure gener-
ated by gravity-release of water  at the donor water-
body, and forcibly transferred to a separate water-
body. The donor/recipient waterbodies are highly 
likely to be separated by considerable distance, often 
across watershed boundaries, and are not otherwise 
adjoining. Dispersal events are unlikely to be con-
tinuous, unless the RWT is constantly operational—
though many RWTs operate seasonally. RWT pipes/
tunnels therefore do not generally provide a continu-
ous habitat for natural spread and colonisation (except 
for biofouling organisms).

For open RWT infrastructure (artificial water-
courses including water supply canals, aqueducts, 
irrigation channels), the distinction is slightly more 
ambiguous at first glance. Similarly to navigable 
canals, water supply canals create a physical link 
between waterbodies and enable a degree of natural 
spread locally. However, there are several key charac-
teristics which distinguish RWT water supply canals 
from the current corridor category:

1. Initial INNS introduction to water supply canals 
likely results from the input of water from a dis-
crete donor waterbody (typically a river or res-
ervoir), which may be a considerable distance 
away, and not from the natural movement of spe-
cies through an adjoining watercourse.

2. Water/species movement along water supply 
canals is often subject to human intervention—
water can be mechanically pumped against grav-
ity, facilitating movement across barriers which 
organisms could not naturally pass.

3. Water can be abstracted from water supply canals 
and transferred to other separate waterbodies—
water supply canals can therefore represent both 
a donor and receiving waterbody, in addition to 
routes for dispersal. For example, in the East-
ern Route of China’s South-North RWT, water 
from the Yangtze River is transferred into a pur-
pose-built water supply canal, along which 34 
mechanical pumping stations lift water to higher 
elevations and move it against gravity (He et al. 
2010). The water supply canal is part of a com-
plex network of tunnels and reservoirs, and water 
is transferred from the main water supply canals 
to other watercourses (Rodgers et al. 2019). Simi-
larly, the Integration Project of the São Francisco 
River in Brazil comprises two large main water 
supply canals each over 200 km long. Water from 
the São Francisco River is pumped into the pur-
pose-built water supply canals, and flow is regu-
lated by a series of 28 reservoirs and numerous 
pumping stations (Asth et al. 2021; Gutierre et al. 
2023).

4. Water supply canals do not generally form trans-
portation routes for vehicles. As diverse sys-
tems, some RWTs networks may utilise sections 
of existing navigable canals to convey water, or 
abstract water from navigable canals. Interrela-
tion is not common however – for example, of the 
26 large inter-basin RWTs in Canada, none have 
the primary purpose of transferring water for 
navigation (Siddick et al. 2023) suggesting no or 
limited links with navigable waterway infrastruc-
ture.

Fig. 2  Description of the corridor category from CBD UNEP/CBD/SBSTTA/18/9/Add.1, 2014, page 4., which pertains to navigable 
canals. As it currently stands, this description does not apply to INNS introduction or spread via raw water transfer infrastructure
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5. Navigation canals can connect marine and fresh-
waters e.g. the Suez navigation canal. In contrast 
RWT systems are designed to move freshwater.

Moving forwards with RWT classification

An invasion pathway includes both the vector that 
carries an organism and the route along which it 
travels (Essl et al. 2015). For RWTs, this means con-
sidering water as a discrete vector that is intention-
ally being moved, in addition to the routes created by 
complex pathway infrastructure. Human activity is 
also an important factor to consider when classifying 
pathways (Genovisi and Shine 2004).

How can we classify the complex RWT pathway 
within the CBD framework, if the present corridor 
category does not accommodate it?

Adding RWTs to other CBD categories

RWTs could be added to a different category based 
on similar features. The ballast water pathway, a 
sub-category of the ‘transport-stowaway’ category, 
is mechanistically similar to RWTs. As the name 

suggests, the ballast water itself is the vector of inva-
sion, rather than the vessel directly. This distinction 
separates ballast water from two other similar ‘trans-
port-stowaway’ subcategories – ‘hitchhikers on ship/
boat’, and ‘ship/boat hull fouling’.

A similar view could be applied to RWTs, reflect-
ing that INNS are moved between non-adjoining 
waterbodies as a result of water translocation, not 
through natural spread.

However, the category is explicitly linked to trade 
and transportation (Hulme 2009; Harrower et  al. 
2018) (Fig. 3), and stowaways are not associated with 
any specific commodity (Hulme et  al. 2008; Essl 
et al., 2020).

The ‘transport contaminant’ category, relating 
to co-movement with the commodities that species 
directly associate with, may be better suited (Fig. 3), 
as water is essentially a commodity being trans-
ported. In simplistic terms, RWTs appear similar to 
the ‘habitat material’ sub-category, as water is a spe-
cific habitat/commodity being moved. However, this 
category is inherently linked to the trade and trans-
port of goods via vehicles (Hulme et al. 2008; Hulme 
2009; CBD 2014). Additionally, given the efforts to 
separate different types of a habitat materials and 

Fig. 3  Description of the transport-stowaway and transport-contaminant category from CBDUNEP/CBD/SBSTTA/18/9/Add.1, 2014, 
page 3. Each of these separate categories can describe INNS introduction via boats/ships
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other products into different sub-categories (Fig.  1) 
to be as specific and informative about pathways as 
possible (Harrower et al. 2018), adding ‘water’ to the 
list of habitat materials would be counter-productive. 
For example: ‘contaminant nursery material’, ‘timber 
trade’ and ‘contaminants on plants’, whilst all simi-
lar, are all distinct subcategorises from contaminant 
‘habitat material’.

RWTs are clearly not well-represented by either 
of the two aforementioned categories for the reasons 
outlined. Beyond this, both categories are strongly 
linked with primary introductions resulting from 
long-distance jumps in dispersal, whereas RWTs 
are more closely related to intranational secondary 
spread. Further, whilst both categories would high-
light the role of water as defined vector of invasion, 
both would overlook the integral role of the complex 
purpose-built and permanent infrastructure underly-
ing the dispersal route. Additionally, the change in 
category description needed to accommodate RWTs 
would be unhelpful for the current sub-categories, 
which are all well-represented.

Modifying the CBD corridor category

Given the limitations of the transport-stowaway and 
transport-contaminant categories, modifying the cor-
ridor category, the category to which RWTs most 
naturally align, offers the most straightforward means 
of accurate representation. This modification requires 
several steps outlined below:

1. Update the main corridor category descrip-
tion:. Changes from original description in bold: 
Related to natural or assisted spread from neigh-
bouring or hydrologically connected regions. 
Corridors refer to the movement of alien organ-
isms into a new region following the construc-
tion of infrastructure in whose absence spread 
would not have been possible. Such transbiogeo-
graphical corridors include navigable canals/
waterways (connecting river catchments and 
seas), raw water transfer infrastructure, and 
terrestrial tunnels linking mountain valleys or 
oceanic islands.

2. Create a distinct sub-category for ‘navigable 
canals/artificial waterways’: The navigable 
canal/artificial waterways sub-category would 
maintain the original description applied to inter-

connected waterways/basins/seas subcategory 
(Fig. 1).

3. Create a distinct sub-category for raw water 
transfer within the corridor category: Infrastruc-
ture systems (including tunnels, pipelines, aque-
ducts, water supply canals) which form connec-
tions between otherwise hydrologically separate 
waterbodies, through which the movement of 
water as a specific commodity occurs. Species 
spread is assisted by the intentional movement of 
water to different locations.

Other classification frameworks

Whilst the CBD framework is the accepted global 
standard, two key INNS information databases, the 
European Invasive Alien Species Gateway (DAI-
SIE), and the IUCN’s Global Invasive Species Data-
base (GISD), have their own pathway classification 
systems. Though largely similar to the CBD’s, some 
categories are not directly or indirectly represented by 
DAISIE or GISD. For example, DAISIE has a ‘dis-
persal’ category which includes only ‘canals’, and the 
GISD has no directly analogous category (Saul et al. 
2016). Integrating RWTs within these frameworks to 
allow consistent application across other databases is 
also highly recommended.

Discussion

RWTs are a globally occurring dispersal pathway 
for diverse taxa, operating at multiple scales and 
across a range of habitat types. The number of RWT 
schemes worldwide is growing quickly in response to 
the impacts of human population growth, urbaniza-
tion and climate change on fresh water resources. The 
relevance of this pathway will continue to increase, 
though RWTs are currently poorly understood within 
invasion science (Waine et  al. 2023). Consequently, 
water resource managers are overlooked within 
international analyses of pathway stakeholders (Bel-
lard et  al. 2016; Novoa et  al. 2018), and freshwater 
resource use is not currently viewed as a direct driver 
behind freshwater invasions (IPBES 2023a, 2023b; 
Schwindt et al. 2023).

Clearer representation of RWTs within pathway 
classification frameworks and consistent usage of 
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pathway-related terminology is needed to improve 
pathway understanding and awareness. We suggest 
modifying the current ‘corridor’ category defini-
tion in the CBD framework to allow the inclusion 
of RWTs as a distinct sub-category, differentiated 
from a separate ‘navigable canal/waterways’ sub-
category. Elements of the two pathways may appear 
superficially similar where artificial watercourses 
are concerned, but the mechanistic basis of introduc-
tion and spread via water supply canals is different 
to navigable canals. Importantly, pathway stakehold-
ers, drivers, invasion risks, environmental impact, 
management, and policy opportunities also differ 
significantly.

Increasing RWT pathway awareness will have 
benefits for many areas of invasion science, includ-
ing enhancing INNS spread predictions, pathway 
risk analyses, pathway prioritization exercises and 
cost calculations. Indeed, the economic cost of corri-
dors as they are currently understood has been calcu-
lated at around $0.5 million annually (Turbelin et al. 
2022). However, a single water company in the UK 
spends over 800 k annually to remove invasive mus-
sels from RWT pipelines (Aldous et  al.  2016, and 
zebra mussel removal from raw water infrastructure 
in the Pacific Northwest region of the United States 
of America is estimated to be over $500 million annu-
ally (Stockton-Fiti et  al. 2023). The economic and 
environmental impact of corridors will continue to 
be overlooked if RWTs are not better understood and 
properly accounted for within pathway classification 
frameworks.
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