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ABSTRACT Having accurate information about population parameters of armadillos (Mammalia, 10 

Cingulata) is essential for the conservation and management of this taxon, most species of which 11 

remain poorly studied. We investigated whether we could accurately identify 4 armadillo species 12 

(Euphractus sexcinctus, Dasypus novemcinctus, Cabassous tatouay, and Cabassous unicinctus) based on their 13 

burrow morphometry. We first selected published studies that reported measurements of width, 14 

height, and angle of the burrows used by the 4 species of aradillos. Then, using such data we simulate 15 

burrow measurements for each of the 4 species of armadillos, we created predictive models through 16 

supervised machine learning that were capable of correctly identifying the species of armadillos based 17 

on their burrows’ morphometry. By using classification algorithms such as Random Forest, K-18 

Nearest Neighbor, Support Vector Machine, Naive Bayes, and Decision Tree C5.0, we achieved the 19 

overall accuracy for the classification task by about 71%, including an overall Kappa index by about 20 

61%. Euphractus sexcinctus was the most difficult species to discriminate and classify (approximately 21 

68% of accuracy), whereas C. unicinctus was the easiest to discriminate (approximately 93% of 22 

accuracy). We found that it was possible to identify similar-sized armadillos based on the 23 
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measurements of their burrows described in the literature. Finally, we developed an R function 24 

(armadilloID) that automatically identified the 4 species of armadillos using burrow morphology. As 25 

the data we used represented all studies that reported the morphometry of burrows for the 4 species 26 

of armadillos, we can generalize that our function can predict armadillo species beyonour data.  27 

   28 
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   31 

Estimating population parameters for wildlife is one of the primary interests of scientists and 32 

conservationists because of its decisive influence on wildlife management and conservation. 33 

However, estimating such parameters (e.g., density, abundancy, occurrence) is not straightforward, 34 

particularly for wide-ranging, low-density, elusive, and unstudied species, most of which are 35 

threatened (Schipper et al. 2008, Desbiez et al. 2018). For example, according to the IUCN Red List 36 

of Threatened Species, 10 out of the 20 extant armadillo species had unknown population trend 37 

information, whilst the other 6 were in decline; 5 species were categorized as Data Deficient, 5 as 38 

Near Threatened, and 2 as Vulnerable (IUCN 2019). Because it is not practical to employ tagging 39 

methods to derive armadillo population estimates due to logistical difficulties, high costs, and small 40 

numbers of possible captures (Loughry and McDonough 2013, Desbiez et al. 2018), less than 20% 41 

of armadillo studies were based on fieldwork conducted on wild populations (Superina et al. 2014). 42 

Alternatively, noninvasive methods such as camera trapping have been successfully used to access 43 

occupancy for armadillo species (Zimbres et al. 2013, Rodrigues and Chiarello 2018). However, 44 

camera-survey methods require a large number of cameras and high associated costs (e.g., Rodrigues 45 

and Chiarello 2018), cameras are vulnerable to animal damage, adverse weather, and theft or 46 
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vandalism, and such methods are likely produce a small number of detections, particularly for rarer 47 

species (Maccarini et al. 2015, Desbiez et al. 2018).  48 

Although armadillos are observed in nature above ground, they dig burrows for shelter 49 

(housing, raising offspring), protection (to hide from predators and to buffer against environmental 50 

temperatures), and feeding (foraging burrows) (McNab 1980, Eisenberg and Redford 1999, Desbiez 51 

et al. 2018). Burrows created by armadillos have specific shapes and sizes (Carter and Encarnaçao 52 

1983, Abba et al. 2005, Trovati 2015, Attias et al. 2016, Desbiez et al. 2018), which are typically 53 

influenced by anatomical and morphological differences among species (e.g., Carter and Encarnaçao 54 

1983, Attias et al. 2016). Several previous studies have used armadillo burrows to estimate population 55 

parameters including habitat use and density and to assess activity and behavior (Zimmerman 1990, 56 

McDonough et al. 2000, Abba et al. 2005, 2007, Desbiez et al. 2018). However, identifying 57 

armadillos based on their burrows is challenging (McDonough et al. 2000, Arteaga and Venticinque 58 

2010). For instance, Carter and Encarnação (1983) fitted 4 species of armadillos (Cabassous 59 

tatouay, Cabassous unicinctus, Euphractus sexcinctus, and Priodontes maximus) with radio transmitters and 60 

found that the shape of the burrow entrances differed between the species. Not surprisingly, more 61 

records on burrow measurements are available for the species with the widest geographic range, the 62 

wide-ranging Dasypus novemcinctus (Zimmerman 1990, McDonough et al. 2000, Platt et al. 2004, 63 

Sawyer et al. 2012). In addition to D. novemcinctus, several additional species of armadillos were also 64 

monitored and had measurements of their burrows reported (Medri 2008, Attias et al. 2016, Desbiez 65 

et al. 2018). However, the relationship between the reported burrow measurements and species 66 

identification remains tenuous (e.g., Arteaga and Venticinque 2010). Few studies reported burrow 67 

measurements for different armadillo species (e.g., Carter and Encarnação 1983), and each reported 68 

measure can be different among the studies or is not always associated with their corresponding 69 

estimate of precision (variance or standard deviation), further complicating the identification process 70 
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(Carter and Encarnação 1983, McDonough et al. 2000, Medri 2008, Arteaga and Venticinque 2010, 71 

Trovati 2015).  72 

Machine learning (ML) enables computers to solve tasks analyzing complex patterns without 73 

being explicitly programmed to solve those tasks (Sen 2018). State-of-the-art methods teach 74 

machines via supervised learning (i.e., by showing them correct pairs of inputs and outputs from 75 

labeled data), unsupervised learning (i.e., finding hidden information or structure from unlabeled 76 

data), and semi-supervised learning (i.e., a combination of supervised and unsupervised ML 77 

technique) (Sen 2018). Machine learning algorithms and models aim to maximize predictability based 78 

on data and have demonstrated high accuracy in predicting ecological patterns (Olden et al. 2008, 79 

Crisci et al. 2012, Thessen 2016). Machine learning models have been applied increasingly in ecology, 80 

including in studies of species distribution modeling (Elith et al. 2006, Phillips et al. 2006), species 81 

diversity (Olden et al. 2008), and distribution (Elith and Leathwick 2009), and represent a potential 82 

for improving species identification methods (Norouzzadeh et al. 2018).  83 

Considering that C. tatouay, C. unicinctus, D. novemcinctus, and E. sexcinctus have overlapping 84 

ranges and inhabit regions affected by anthropogenic disturbances (Vivo et al. 2011, Egeskog et al. 85 

2014, Trovati 2015), improving identification methods might help answer questions about habitat 86 

preferences and the role of anthropogenic threats for each species of armadillo, among several 87 

others. Our objective was to examine whether it was possible to identify similar sized armadillos 88 

based on their burrows using ML. Assuming that armadillo burrows have been correctly identified in 89 

published studies, we aimed to use simulating burrow measurements (width, height, and angle) for 90 

the 4 species of armadillos (C. tatouay, C. unicinctus, D. novemcinctus, and E. sexcinctus), based on data 91 

found in the literature, to train data and then classify it using supervised ML.  92 

METHODS  93 

Data Simulating Process  94 
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Considering that, to the best of our knowledge, there is no publicly available dataset for armadillo 95 

classification (i.e., there is no dataset that can be used to train a ML-based model), we decided to 96 

synthetically create one. This dataset was constructed based on 9 studies that reported morphometric 97 

measures of burrows for 4 species of armadillos (Table 1). From these works, we extracted and used 98 

the mean and standard deviation values to generate synthetic data for 3 measures: width, height, and 99 

angle. We choose these measurements because, they are the only measurements consistently present 100 

on the works related to morphometric measurements of armadillo burrows (Table 1), and they can 101 

provide relevant information that may assist in the discrimination of different burrows and the 102 

species of armadillo (Medri 2008, Sawyer et al. 2012, Attias et al. 2016, Desbiez et al. 2018).  103 

Considering this lack of information, we created 2,000 synthetic samples (i.e., measurements 104 

of width, height, and angle) for each burrow class, based on all studies available for each species. For 105 

instance, we used 5 studies investigating D. novemcinctus burrows (Table 1). Therefore, in order to 106 

generate 2,000 samples for this class, we synthetically created 400 instances based on the (width, 107 

height, and angle) measurements from each one of the 5 studies. We repeated the same procedure 108 

for the other 3 species of armadillos, resulting in a final data set of 8,000 synthetic burrows. All this 109 

synthetic data were generated using the Normal family of distribution (rnorm function). For reported 110 

studies lacking corresponding standard deviation, we used the highest value found from studies that 111 

reported it for the same species (Table 1). Furthermore, for C. tatouay we used the Poisson family of 112 

distribution (rpois function) to generate data for angle since no standard deviation had been reported 113 

for this species thus far. 114 

Although a considerable amount of data is created with this process, for each species we 115 

randomly selected and further exploited only 5,600 (70%) samples (Fig. 1), an important process to 116 

reduce bias of the data. The remaining 30% of samples was discarded from further analyses.  117 
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 118 

 119 

Machine Learning (ML) Model Development  120 

The main goal of supervised ML algorithms is to build models capable of learning patterns from the 121 

data and then use this information to correctly classify unseen patterns. Correspondingly, our main 122 

goal was to create a ML model capable of learning burrows patterns (width, height, and angle) to 123 

correctly classify unseen burrow data (and consequently, armadillo species), using the synthetic data. 124 

It is important to highlight that this exploited data were scaled and centered, a common process 125 

performed in ML models (Mulaik 2009, Lantz 2019).  126 

 Since there is no single ML algorithm that fits all data (Tsai et al. 2009), we decided to assess 5 127 

different ML-based techniques for the specified problem: Random Forest (rf; Breiman 2001), K-128 
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Nearest Neighbors (knn; Hechenbichler et al. 2004), Support Vector Machine Radial (svmRadial; 129 

Scholkopf et al. 1997), Naïve Bayes Classification (nb; Rish 2001), and C5.0 Decision Tree (C5.0; 130 

Freund and Mason, 1999). Furthermore, since each one of those models has its own set of hyper-131 

parameters (i.e., parameters that impact the learning process and, consequently, the outcome), we 132 

used the Grid-search method to search for the best set of hyper-parameters for each approach. This 133 

approach trains the same model several times varying the hyper-parameters (according to a pre-134 

defined set of values) and then selects the model with the best performance for further analysis and 135 

investigations (Bergstra and Bengio 2012). All algorithms were implemented using the CARET 136 

package (Kuhn 2020) in the R program (R Core Team 2018).  137 

 To train and evaluate each method, we split the generated data into training (75%, i.e., 4,200 138 

samples) and validation (25%, i.e., 1,400 instances) sets. The former is used to train the model, i.e., to 139 

make the model learn the patterns, whereas the latter is used to assess the model’s performance. 140 

Observe that the model does not learn using the validation set, which is only used during the 141 

evaluation. By doing this, not only we avoid biasing the model, but we assess the model’s 142 

performance in a scenario similar to the real world, i.e., a scenario in which unseen data (usually 143 

obtained in the fieldwork) is classified by the trained model. Aside from splitting the data, we also 144 

performed a 2-fold cross-validation repeated 3 times to minimize initial overfitting (Kohavi 1995). As 145 

the goal of ML algorithms is developing predictive models, we quantified the model performance 146 

using a confusion matrix and the Kappa index, highlighting accuracy, 95% CI, and other statistics by 147 

class (Table 2; Code File S1, available online in Supporting Information).  148 

RESULTS  149 

In general, all assessed methods had a very similar performance with approximately 70% of the 150 

overall accuracy and 61% of Kappa index accuracy (Table 2). As expected, the evaluated methods 151 

produced very similar results for all classes. Aide from this, it is interesting to observe that class E. 152 
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sexcinctus was the most difficult one to discriminate and classify (approximately 68% of accuracy), 153 

whereas class C. unicinctus is the easiest one to discriminate (approximately 93% of accuracy) (Table 154 

3).  155 

Overall, the results have shown that ML techniques are capable of identifying similar-body-156 

sized armadillos based on their burrows using only 3 measurements (width, height, and angle), i.e., 157 

these measurements can be used to classify the burrows and, consequently, armadillo species.  158 

DISCUSSION  159 

We demonstrated that it is indeed possible to identify similar-body-sized armadillos based on their 160 

burrows. Supervised ML is an appropriate method able to deal with the complexity of the data by 161 

enabling the identification of armadillo burrows. Unlike traditional identification methods, ML 162 

models successfully found patterns and accurately matched them with the validation set. In such a 163 

way, it might be a useful tool that will help scientists to correctly identify armadillo burrows, 164 

providing a noninvasive, low-cost method to estimate population (i.e., relative abundance) or species 165 

(i.e., occupancy) parameters.  166 

We found that the accuracy of ML models varied among our chosen species but overall was 167 

about 71%. Given this level of overall accuracy, the most appropriate use of the armadilloID 168 

function will be helping scientists and managers identifying the four species of armadillos 169 

considering altogether all labels from the 5 ML predictions. The use of complementary clues, when 170 

available, such as initial visual classification of the burrow shape (Trovati 2015) and presence of 171 

tracks or other local features (Sawyer et al. 2012, Desbiez et al. 2018) is therefore advisable. For 172 

instance, E. sexcinctus typically constructs burrows with an inverted U-shapedentrance, whereas the 173 

burrows of C. unicinctus have an almost perfectly round shape in an almost vertical angle (Carter and 174 

Encarnaçao 1983, Trovati 2015, Desbiez et al. 2018). Indeed, C. unicinctus showed higher accuracy of 175 

classification of their burrows. Moreover, D. novemcinctus is the only species that may have as many as 176 
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5 entrances into a single den (Carter and Encarnaçao 1983), and rotting leaves are often found near 177 

the entrances of burrows, especially after rains or floods (Talmage and Buchanan 1954). Therefore, 178 

using qualitative and local information, together with the morphometric measures, will surely 179 

guarantee higher levels of accuracy in correctly identifying armadillo species based on their burrows.  180 

Typically, burrows are classified as either active or inactive during fieldwork (Sawyer et al. 181 

2012). An active burrow has compacted forest litter, fresh excavations, or tracks at the entrance, 182 

whereas an inactive burrow typically has spider webs or debris in the entrance (Sawyer et al. 2012) 183 

and an eroded shape. Those differences are evident and easily identified in the field, although 184 

discriminating them does require some degree of experience by the observer. Although not tested, 185 

considering only measurements from active burrows may also increase the accuracy of armadillo 186 

identification from burrow measurements. We also highlighted the use of the 3 measures (width, 187 

height, and angle of the burrow’s entrance) when collecting field data to identify armadillo species 188 

using the supervised ML methods. Apart from being easy to collect, they are the only measurements 189 

consistently present in the few studies reporting morphometric measurements of armadillo burrows. 190 

Burrow width and height provide more precise information than the diameter, as was also pointed 191 

out by Carter and Encarnação (1983). 192 

Because of the armadillo’s fossorial or semi-fossorial lifestyle (McBee and Baker 1982, 193 

Redford and Wetzel 1985, Hayssen 2014, Desbiez et al. 2018), searching for their burrows represents 194 

the most effective, low-cost sampling method for estimating population parameters. Such a sampling 195 

method might considerably increase our knowledge about armadillos, as some of them (e.g., 196 

C.tatouay, and C.unicinctus) spend most of their time underground (Hayssen 2014, Desbiez et al. 2018). 197 

We found that the use of novel technologies (machine learning) improved the usefulness of a 198 

noninvasive method, especially when dealing with low-density, elusive, and poorly known species 199 

such as the armadillos (Abba and Superina 2010, Desbiez et al. 2018).  200 
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Considering that the 4 armadillo species we examined inhabit a region affected by 201 

anthropogenic disturbances (Vivo et al. 2011, Egeskog et al. 2014, Trovati 2015), it is necessary to 202 

improve identification methods based on their burrows to consider the role of anthropogenic threats 203 

for each species. We still don’t know much about anthropogenic effects on armadillos’ populations 204 

(Abba and Superina 2010, Superina et al. 2014; Rodrigues et al. 2020). Correctly identifying armadillo 205 

burrows may increase our knowledge of species-specific habitat use, density, activity, behavior 206 

(McDonough et al. 2000, Abba et al. 2005, 2015, Arteaga and Venticinque 2008, Desbiez et al. 2018), 207 

and even ecosystem services such as bioturbation (Sawyer et al. 2012), and ecosystem-engineering 208 

(Desbiez and Kluyber 2013).  209 

MANAGEMENT IMPLICATIONS  210 

The deficit of information on armadillo populations in tropical ecosystems is partially due to the lack 211 

of cost-effective methodologies allowing managers to obtain data that will eventually lead to the 212 

development of appropriate management strategies. The supervised ML and the armadilloID 213 

function considered in this study indicate the potential that both have to identify similar-body-sized 214 

armadillos based on their burrows. The function presented here automates the burrow identification 215 

analysis for E. sexcinctus, D. novemcinctus, C. tatouay, and C. unicinctus, allowing scientists to use a 216 

noninvasive, low-cost method to study those armadillo species. Our method provides new insight 217 

towards preserving the old sampling methods (the mot cost-effective) while using new technologies 218 

such as ML to enable estimating population parameters of armadillo species. The function has the 219 

potentiality of expanding its options to embrace more armadillo species and more statistical models 220 

from other R packages. We encourage R programmers and ecologists to modify the code to satisfy 221 

their needs and expand the usage of armadilloID. Nevertheless, decision making about burrow 222 

classification should be made by the scientist itself, using the supervised ML together with as much 223 
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qualitative field observation as possible, to more accurately identify species of armadillo based on 224 

burrow morphology.  225 
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Table 1. Species, measurements, and references used to generate the data of burrows. N = number 354 

of studies. 355 

Species N Measurement Referencea 

C. tatouay 2 width, height, angle Carter and Encarnação (1983), Anacleto (2006)a 

C. unicinctus 4 width, height, angle 
Carter and Encarnação (1983), Anacleto (2006)a, 

Trovati (2009), Desbiez et al. (2018) 

D. novemcinctus 5 width, height, angle 

Zimmerman (1990), McDonough et al. (2000)a –

EUA, Platt et al. (2004), Anacleto (2006)a, Sawyer 

et al. (2012) 

E. sexcinctus 4 width, height, angle 
Carter and Encarnação (1983), Anacleto, (2006)a, 

Medri (2008)a, Trovati (2009) 

aangle not reported 356 

357 
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Table 2. Performance of the machine-learning (ML) algorithms over the validation set. 358 

ML algorithms Accuracy  95% CI Kappa 

Random Forest 0.69 0.67 to 0.72 0.59 

k-Nearest Neighbors 0.71 0.68 to 0.73 0.61 

Support Vector Machine  0.72 0.70 to 0.74 0.63 

Naïve Bayes 0.69 0.67 to 0.72 0.59 

C5.0 Decision Tree 0.72 0.69 to 0.74 0.62 

 359 

360 
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Table 3. Machine-learning (ML) algorithms accuracy over the validation set by the species of 361 

armadillos. 362 

ML algorithms E. sexcinctus  D. novemcinctus C. tatouay C. unicinctus 

Random Forest 0.68 0.75 0.84 0.92 

k-Nearest Neighbors 0.67 0.76 0.86 0.93 

Support Vector Machine  0.68 0.77 0.88 0.93 

Naïve Bayes 0.65 0.76 0.87 0.90 

C5.0 Decision Tree 0.68 0.78 0.86 0.93 

 363 

Summary for online Table of Contents:  364 

1. Our findings advance on the use of novel technologies (machine learning) enabling the use of 365 

a non-invasive method (burrows) for dealing with low-density, elusive, and not well-known 366 

species such as the armadillos. 367 

2. A non-invasive method for estimating population parameters of armadillo species will surely 368 

guarantee higher efforts towards armadillo management and conservation. 369 


