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A toy model of food production in a
connected landscape

Anthony O’Hare*

Department of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom

The drive to maximize food production in a sustainable manner is a paramount
concern for farmers and governments. The aim of food producers is to maximize
their production yield employing actions such as application of fertilizer or pesticide
they believe help to achieve this aim. However, farms do not exist in isolation, but
rather share a landscape with neighbors forming networks where any action taken
by any one farmer a�ects their neighbors who are forced to take mitigating actions
creating a complicated set of interactions. Understanding these [non-]cooperative
interactions and their e�ect on the shared ecosystem is important to develop food
security strategies while protecting the environment and allowing farmers to make a
living. We introduce a simple competitive agent based model in which agents produce
food that is sold at a fixed price (we ignore market dynamics and do not include explicit
punishment on any agent). We analyzed agent’s profits in several simple scenarios
allowing us to identify the most advantageous set of actions for maximizing the yield
(and thus profit) for each farmer. We show that the e�ect of the structure of the
network on each farm has implications on the actions taken by agents. These results
have implications for the understanding of the e�ects of farming practices on the
environment and how di�erent levels of cooperation between farmers, taking into
account the local terrain, can be used to incentivise producers to minimise the e�ects
on the environment while maximizing yields.

KEYWORDS

competition, cooperation, agent-based modeling, agricultural system model, food
production model

1. Introduction

With an ever increasing global population, the need to maximize food production in a
sustainable manner is a paramount driver for producers throughout the world. The global food
system is complex with many interconnected and interdependent parts. Much research is being
done in individual aspects of this complex system [1] but this assumes that each facet of the
food system can be separated into individual isolated units with less research on how these facets
interact [2].

The economic goal of any food producer is to either maximize their crop yield or minimise
the growing time so as to get their produce to market as quickly as possible, thereby gaining
a premium. However, farms share a landscape with neighbors forming complex dynamic
interactions where the actions of any one farmer affects their neighbors who are compelled to
take mitigating actions of their own creating a complicated set of interactions that have an impact
on the landscape and ecosystem [3].

To reduce the impact of agricultural land use on the landscape, ecosystem, and biodiversity
requires modeling of the interdependencies of farmers, wildlife, climate, soil at the landscape
scale and the decisions humans make within this system [4]. Several research programs exists
that attempt to address these complex interactions at the landscape level [5–9] and there are
many review papers [10–12] on the research on land use and its impact on climate change
[13–15], health [16], diversity [17, 18], the impact of different management policies on food
production and biodiversity [19–21], and the impact of externalities [22] but relatively fewer

Frontiers in Applied Mathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1058273
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1058273&domain=pdf&date_stamp=2023-02-02
mailto:anthony.ohare@stir.ac.uk
https://doi.org/10.3389/fams.2023.1058273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1058273/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


O’Hare 10.3389/fams.2023.1058273

at the farm level where decisions on land use and management
are made [2]. A further complication in modeling landscapes is
that the landscape interaction is highly correlated with any resident
population or farmer-industrialist occupation [23–25].

Agent Based Models (ABM) are a computational framework
that models autonomous individuals and their interactions and
are routinely used in land use and land cover models [26–29].
They can easily accommodate game theory in accounting for
decision making of the agents in a flexible manner [30] and
are suitable for studying complex socio-ecological systems [30–
33].

Traditional economic models assumes that agents have complete
and perfect information on the other agents in the system.
Current models incorporate the notion of bounded rationality, that
rational decision makers may make sub-optimal decisions in some
circumstances [34]. Humans do not complete a cost-benefit analysis
to calculate their optimal position but make decisions that produce
a satisfactory solution, a process known as satisficing. Satisficing has
been implemented in ABMs [35].

A mathematical analysis of the effects of different management
actions that may be employed on farms is required at a regional
level to understand the possible feedback mechanisms that exist.
A shared landscape provides a mechanism for the actions of a
farmer to affect (positively or negatively) their neighbors. Systems
such are these are dynamical in nature as each farmer can modify
the set of actions they choose to make at any time during (or
between) a growing season to maximize their crop yields. In reality,
there are limits to what farmers are permitted to do in terms
of application of pesticides etc. but other management strategies
make the system dynamic. Understanding these [non-]cooperative
actions available to farmers and their affect on the shared
ecosystem is important to develop food security strategies while
protecting the environment and allowing farmers to make a
living.

In this paper we look at the effect of competitive behavior between
individual food producers (farmers) based on simple economic
principles in an agent-based framework that incorporates an agents’
actions for maximizing their crop yield and the subsequent effects
on their neighbors. The assumption is that farms are well established
and are not able to change the produce they grow due to local
conditions or topology. Traditional land use models mainly focus on
dynamic decisions on how to use land rather than on the effect of long
established land use patterns.

We model two types of farms in a very simplistic manner, 1)
simple sigmoidal crop growth where farmers only harvest (realize
a profit) at the end of the season, mimicking the production of
cereal crops, and 2) a continuous growth model, mimicking the
growth of animals that may be sold to realize profit at any time. We
model farm inputs as being beneficial to similar farms, for example
a crop farmer may use pesticides or fertilizers that are taken into
the environment and shared at an ecosystem or regional level and
prove beneficial to other crop farms. However, without modeling the
exact mechanisms we assume that the input is detrimental to different
farms, for example any wind blown excess from a crop farmer using
pesticides would prove detrimental to farms such as fruit farms which
require pollinating insects. Furthermore, we assume that the benefit
or detriment decays with distance so the further apart farms are the
less their effect on each other. This simplistic approach is enough to
demonstrate the importance landscape plays in farming systems.

2. Methods

We create a toy model that incorporates the basics of food
production and how farms producing different crops interact. The
goal is illustrate how a system of food production behaves at a
landscape level without specific detail of crops grown and how they
interact.

Let us consider a system of food producers (in the language of
ABM they are called agents or actors but we will refer to them here
as farmers) growing food in a locally closed environment, i.e., there
are no interactions with farms outside the system so we can ignore
boundary effects. For simplicity, we will refer to the food produced
as a crop (even if the farm rears animals for food). In such a closed
system is reasonable to expect the crop management on one farm
can impact on neighbors, for example, one can imagine that fertilizer
or pesticide sprayed on one farm may be carried by the wind, or
can runoff into watercourses to neighboring farms. The impact on
neighboring farms can be either positive (for example, if both farms
grow the same crop and windblown pesticides provide an, albeit
small, positive benefit) or negative (reducing a neighbors ability to
grow their crop, if, for example, pesticide use on one farm reduces
fruit pollinator population).

The growth of each farmer’s crop can be described as a function
of the management actions employed by all farmers in the system,
ui,j(t), as ψi(t, ui,j(t)). The subscript i refers to each farmer and j their
neighbor; we note that ui=j(t) is the strategy employed by i to increase
the yield of their crop and ui 6=j(t) is the effect from a neighboring
farm j. Profit can be realized by selling the crop at a unit price of pi(t),
allowing each farmer to have a different conversion factor which may
be realized by selling in different markets etc. In this paper we will
have a constant p(t) for each crop type and further simplify this by
setting p(t) = 1. The total turnover that a farmer can realize is thus
given by the expression

ψi(t, uj(t)) pi(t) δth (t) (1)

where th is the harvest date and δth (t) is the Heaviside step function
which is evaluated as 0 if t < th and 1 if t ≥ th so that a farmer
cannot realize any profit until the crop is harvested. A farmer can
monitor the growth of their crop throughout its growing season and
so can decide to take an action to either increase growth or negate
detrimental effects of their neighbors strategies at any time (subject
to local laws etc).

The cost Ci(t) can be split into 2 parts; fixed costs such as the
initial start-up cost (buying brood stock or seed) and the cost of
managing the crop, for example the daily running costs of the farm
and the costs of any management strategies employed. The running
cost to each farmer i of producing their crop as

Ci(t) = initial cost+
∫ t

0
daily cost dt (2)

The profit for each farmer can now be defined as

Net Profit(t) = ψi(t, uj(t)) pi(t) δth (t)−
∫ t

0
Ci(t)dt (3)

We can clearly see that a farmer will obtain a profit if
ψi(t, uj(t)) pi(t) δth (t) >

∫ t
0 Ci(t, uj(t))dt, i.e., they can sell their crop

for more than it costs to produce. In this simple model, the ability
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of each farmer to produce food is a competition between the growth
of their crops, ψi(t), and the strategies employed by their neighbors,
uj(t).

We will ignore market forces for the remainder of this paper,
assuming that the food produced is limited only by the environment
on which they produce their food that the demand is such that we can
make the simplifying assumption of pi(t) = 1 regardless of the crop
grown.

Two simple growth models will be employed in this analysis;
a linear model that may describe the growth of food production
animals, particularly in the fattening stage, and a logistic model as
it broadly describes the characteristic of little or no growth until a
‘harvestable’ future time and thus no income can be derived until
the crop is harvested. The implicit assumption here is that the crop
doesn’t spoil and can be stored until it is sold.

In the linear model case, the growth of the crop, planted or born
at t0, at some time t > t0 is given by

ψi(t) =
∫ t

t0

(αt + β)
∑

j

µij(t)dt (4)

Where α,β are the parameters of the linear equation and the
summation term sums the interactions from the other farms
integrated over the whole growing season from when the strategy was
employed.

For the logistic growth model, the food production on farm i at
time t is given by

ψi(t) =
∫ t

t0

L
1+ e−k(t−th)

∑
j

µij(t)dt (5)

Where the first term is simply a logistic growth model with a
maximum output L, steepness k, and th when the crop is ready for
harvesting, and the summation term describes the interactions with
the other farms. The assumption is that the crop has little to no value
until it is harvested and the time to harvest is short compared to
its growing season. We also assume that the crop doesn’t spoil once
harvested.

We will use the following simple interaction term (over time and
space) to define the effect of the jth farm on the ith as

µij = 1+ Iije−γ rij e−φτ (6)

Where Iij is the effect of the action employed on farm j on farm
i, γ and φ scale the decay rates of the action over space and time
respectively, τ is the time since the action was employed, rij is the
distance between farms. To avoid multiplying by zero in the case
when there is no interaction between farms (i.e., no farmer has
performed any action) we add 1 to µij. This means a farmer may
implement an action to increase their yield such as apply a pesticide
or fertilizer and the effect will decay over time, while also affecting
their neighbors positively, if they grow the same crop, or negatively,
if they grow a different crop but the effect decays both in time and
distance. We implicitly assume that the effect extends radially and
uniformly from the source farm and do not include any directionality
due to, for example, wind.

To solve our model (Equation 3) we will use two different types
of farms, one using a crop that is described by a linear growth model
with parameters α = 0.028 and β = 0.02 and another by a logistic

growth model with parameters L = 5.8, k = 0.7, th = 150. We
assume is that the crop has little to no value until it is harvested and
the time to harvest is short compared to its growing season, thus the
sharp curve from an almost zero saleable value to a significant one
(decreasing this value, so that the harvest period is longer, doesn’t
appreciably change the output).

We give each farm containing a linear growth crop a an initial
cost of 0.25 to model the purchase of seed or stock, and a daily fixed
cost of 0.001 to model the continuous monitoring and management
of the farm and an initial cost of 0.15 with a daily cost of 0.001 for a
logistic growth crop. These costs are in units of local currency.

Farms that grow crops with a linear model apply some treatment
on day 10 with a cost of 0.35 and farms that grow a logistic crop
apply treatments on days 50 and 100 each with a cost of 0.25. We
set the interaction between farms to ±0.3 which decay at a rate of
and γ = 0.07,φ = 0.008 again in arbitrary units since the goal is to
observe a general pattern rather than model a specific location. We do
not impose any restrictions on the range of the interactions between
farms allowing farms on either end of the network to interact, albeit
with limited effect.

The model is run on three different farm networks on a square
grid; circular, and linear with each farm equidistant from their nearest
neighbor; and randomly.

We solve the model Equation 3 by calculating the growth of the
crop (Equations 4, 5) each day over a period of 240 days. What we
calculate is the profit a farmer would realize if they harvested and
sold their crop on a particular day and a farmer may harvest and
sell early to realize a profit sooner or to avoid potential losses due to
negative interactions due to their neighbors management. We largely
ignore this level of economics here and simply calculate the profit as
a time-series.

3. Results

When each farm within the model grows the same crop,
farmers apply the same action and since the mutual interactions
are all positive the strength of each farmer’s action can be reduced
with no loss of production value, and since each action has a
cost, a saving can be made. In this case, a Nash equilibrium
exists from the mutually beneficial interactions between farms and
farmers cannot gain extra savings from an alternative strategy or
alternative crop.

3.1. Circular networks of farms

In a circular network where each farm is equidistant from their
nearest neighbor, a symmetry exists when every farm produces the
same crop. Here the sum of the inter-farm interactions of each
farm are the same and so everyone gains the same profit. This
symmetry is removed when there is a heterogeneity in the crops
produced by each farm (the heterogeneity here is due to a new class of
crop representative of livestock added to the network). The physical
layout and profit are shown in Supplementary Figures S1, S2 where a
distribution of profit can be seen due, solely, to the imbalance of the
neighboring strategies.
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3.2. Linear networks of farms

No such symmetry exists when farms are laid out in a linear
network. Some farms, particularly those in the center, have an equal
number of neighbors on each side so gain more positive benefit in a
homogeneous crop landscape and so have a greater crop and profit as
a result.

In a heterogeneous crop landscape each farm’s profit is a result
of this lack of symmetry in the network and also the effects of
different crop farms in the network. In this case, farms producing
different crops will have a negative impact on each other but
this can be reduced at larger distances if there are similar farms
closer to due the beneficial interaction of similar cropping farms.
This shielding is a common in these systems where there are
competing interactions.

We plot a linear system of farms in Supplementary Figures S3,
S4. We can see the shielding effects here as farms 0, 1, 23, and 24
are shielded by their neighbors producing the same crop from the
negative impact of the more distant neighbors with different crops
while also benefiting from being at the edge of the network and
having fewer negative interactions. Similarly, farm 16 in the interior is
surrounded by farms with similar crops and the subsequent shielding
means they have the highest profit of the blue star farms.

3.3. Random networks of farms

We randomly distribute 25 farms on a 250 × 250 grid to mimic
a more realistic layout of farms, Figure 1A. In a homogeneous
landscape, each farm benefits from the positive interaction with their
neighbors so the differences in their profit is due solely to their
place in the network and the relative difference of these beneficial
interactions (Supplementary Figure S5).

When farms produce different crops, the heterogeneity in the
landscape drives differences in each farms profit. In Figure 1A we see
that farm 10 and 17 produce a similar crop and are sufficiently close
that they mutually benefit from each others treatment of their crops
and so have the highest profit amongst the blue stars. Farm 13 has
the lowest profit as they are surrounded by red hexagons, negatively
impacting their crop while farms 16 and 22 are shielded from these
negative impacts by farms 12 and 2 respectively. Similar shielding
effects are observed by farm 14 and 20, which being closer to farms
producing similar crops and simultaneously being shielded has the
largest profit of all the red hexagons.

When we connect some farms, e.g., by a road or river, a
mechanism for greater interaction with their neighbors exists.
Modeling the effect of these connections (e.g., contaminants being
unwittingly transported on vehicles, wildlife migrating between farms
etc.) is complex and unique to each circumstance. In this toy model
we make the simplification that connected farms are closer to each
other so that the spatial decay of the interaction is decreased. In the
results shown here we half the distance between connected farms. In
Figure 2A we connect 0, 5, 13, 20, and 21 and observe the difference
in their profit due to the increased interaction with distant more
neighbors. We can see a decrease in profit for farm 20 due to the
diminished shielding effects from farm 5, Figure 2B. Farm 21 benefits
from the increase interaction with farm 20 while farm 0 is most
affected due to lack of any shielding effects (suffering a decrease in

FIGURE 1

The profit generated (B) for a set of farms (A) randomly arranged on a
250× 250 grid. Farms produce a crop that grows as a linear model
(α = 0.028,β = 0.02), red hexagons, or as a logistic model
(L = 5.8, k = 0.7, t0 = 150), blue stars. Red hexagon farms have an
initial outlay of 0.25 and apply a treatment on day 10 with a cost of
0.35 and incur a daily uniform cost of 0.001 while blue star farms have
an initial outlay of 0.15 and apply treatments on days 50 and 100 each
with a cost of 0.25 and incur a daily uniform cost of 0.001. The positive
interaction (on and between farms) is 0.3 and the negative interaction
is -0.3 which decay with a spatial and temporal rate of
γ = 0.07,φ = 0.008 respectively.

profit after 240 days compared to farm 5 that only suffered a smalleer
drop due to the increased interaction with farm 13).

We can divide our landscape into a grid and calculate the level
of contamination in the landscape at each point from every farmer’s
actions by calculating the distance from a farm and time an action
was applied to the grid point. The contamination is calculated as the
impact from each farm observed at each grid point using Equation
(6). We plot this pollution for both types of farms in Figure 3 on day
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FIGURE 2

A similar random layout of farms as Figure 1 but where some farms are
connected, e.g., by a road or river, that provides a mechanism for
greater interaction with their neighbors. We model the interaction as a
halving of the distance between connected farms. We can see that the
shielding e�ects from neighboring farms is diminished leading to
lower profit for farm 20, and that the presence of a connection
decreases the profit for both farm 0 and 5 but the later’s decrease is
compensated by the neighboring similar farms. (A) Random layout of
connected farms. (B) Profit for each farm (arbitrary units).

240, the last day we calculate the profits in Figures 1B, 2B. The range
of the interactions can be seen after 230 days for red hexagons and
140 days for blue stars. For earlier times, the effect will be stronger.

4. Conclusion

We have introduced a toy model of food producing farms in
a closed landscape that interact through the actions they perform
on their farm. Despite the simplicity of the model a number of
interesting and important results are obtained.

FIGURE 3

Measuring the e�ect of the actions on each farm after 240 days and
the long lasting e�ects seen in the landscape. In each picture, the
interactions between farms are positive and it is particularly clear in
the case of red hexagons the beneficial e�ect of being close to
neighbors that manage their farm in the same way. Actions were
performed on day 10 in (A) and days 50 and 100 in (B).

Firstly, the location of the farm within the network or landscape
impacts on their ability to grow crops and produce a profit. We have
seen that those on the edge of the network can receive less beneficial
feedback than those in the interior. This is further compounded
if they are neighbored by farms producing a different crop whose
actions negatively impact the profit of the farm on the edge of the
network. It is difficult to compare different network structures.

Secondly, there is an element of being shielded from the
negative impacts of farms producing a different crop if you are
surrounded by similar farms. This means that the optimal system
of farms is a monoculture as it produces savings in fertilizer,
pesticide, or other actions a farmer may use on their farm. In
each of our networks, the monoculture gave better results than a
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mixed system though one particular farm in a circular network
managed to have the same profit due to the shielding effects of its
neighbors emphasing the importance of the location of a farm in
the network. We have not included the effect on biodiversity in
our simple model which would be impacted by a monoculture food
production system.

Models like this make it easy to predict the level of pollutants
(chemicals added on a farm that are measured outside the farm)
in a landscape. In this simple model, we assume that impacts
are relatively short ranged, and radially uniform but even with
these simplifications we can see cooperative effects in the form of
beneficial interactions with neighbors and shielding from detrimental
effects. Modifications to any of these distributions are easy to
implement for specific landscape conditions. Differences in the
landscape terrain may influence wind patterns affecting the network
of interactions between farms. Of course, the results of such a simple
model may not be easily visible in reality where the interactions
are more complicated and the landscape isn’t smooth like we
assume here.

Only very simple economic assumptions were made in creating
this model and we do not consider this toy model to be an
accurate representation of reality but it does show that at a broad
level interactions between farms can affect the ability to grow
food and modeling these interactions require specific focus and
may not always be as simple as we have produced here. For
example, cotton or apricot producers may obtain a mutual benefit
from everyone using the same pesticide to control common pests
(producing a positive interaction between farms) but also require
a large amount of water and if not shared fairly can result in
negative interactions, particularly in areas of water stress which is
more complicated than the case considered here. Nevertheless, the
competitive nature of these systems display similar patterns of mutual
benefit and shielding.
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