
Integrated Environmental and Genomic Analysis Reveals the
Drivers of Local Adaptation in African Indigenous Chickens

Almas A. Gheyas ,* ,1 Adriana Vallejo-Trujillo,2 Adebabay Kebede,3,4 Maria Lozano-Jaramillo,5

Tadelle Dessie,3 Jacqueline Smith,1 and Olivier Hanotte* ,2,3

1Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
2Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
3LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
4Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
5Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands

*Corresponding authors: E-mails: almas.gheyas@roslin.ed.ac.uk; o.hanotte@cgiar.org, olivier.hanotte@nottingham.ac.uk.

Associate editor: Amanda Larracuente

Abstract

Breeding for climate resilience is currently an important goal for sustainable livestock production. Local adaptations
exhibited by indigenous livestock allow investigating the genetic control of this resilience. Ecological niche modeling
(ENM) provides a powerful avenue to identify the main environmental drivers of selection. Here, we applied an inte-
grative approach combining ENM with genome-wide selection signature analyses (XPEHH and Fst) and genotype-
environment association (redundancy analysis), with the aim of identifying the genomic signatures of adaptation in
African village chickens. By dissecting 34 agro-climatic variables from the ecosystems of 25 Ethiopian village chicken
populations, ENM identified six key drivers of environmental challenges: One temperature variable—strongly correlated
with elevation, three precipitation variables as proxies for water availability, and two soil/land cover variables as proxies
of food availability for foraging chickens. Genome analyses based on whole-genome sequencing (n¼ 245), identified a few
strongly supported genomic regions under selection for environmental challenges related to altitude, temperature, water
scarcity, and food availability. These regions harbor several gene clusters including regulatory genes, suggesting a pre-
dominantly oligogenic control of environmental adaptation. Few candidate genes detected in relation to heat-stress,
indicates likely epigenetic regulation of thermo-tolerance for a domestic species originating from a tropical Asian wild
ancestor. These results provide possible explanations for the rapid past adaptation of chickens to diverse African agro-
ecologies, while also representing new landmarks for sustainable breeding improvement for climate resilience. We show
that the pre-identification of key environmental drivers, followed by genomic investigation, provides a powerful new
approach for elucidating adaptation in domestic animals.

Key words: local environmental adaptation, ecological niche modeling, selection signature, genotype2environment
association, redundancy analysis, African indigenous chicken.

Background
The global livestock sector is facing a major threat from cli-
mate change. Extreme weather and global warming are not
only challenging the physiological tolerance of animals but
also adversely affecting their ecosystems, leading to changes in
the quality and quantity of livestock feed or forage, water
availability, and disease prevalence (Rojas-Downing et al.
2017; Rashamol and Sejian 2018). The demand for livestock
products, however, is on rise and is estimated to double by
2050 due to increasing populations and improved living
standards (Rashamol and Sejian 2018). Sustainable improve-
ment of livestock production, to cater for the increased global
demand, will therefore crucially depend on our ability to uti-
lize/develop climate resilient breeds. Indigenous livestock

populations in different parts of the world show greater ad-
aptation to their local agro-climatic conditions compared
with exotic breeds (Rashamol and Sejian 2018). Some live-
stock species, like domestic chicken, show wide environmen-
tal tolerance as they are found in practically all human
settlements around the world—both in tropical and temper-
ate regions. Elucidating the genetic components of local adap-
tations in such ubiquitous species will be invaluable toward
achieving climate change resilience by allowing the identifi-
cation of stress adaptation genes and thereby facilitating
breed improvements by combining productivity and resil-
ience genotypes.

In the present study, we dissect the environmental and
genomic data of many Ethiopian indigenous chickens from
diverse agro-climatic regions to identify the environmental
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and genetic drivers of local adaptation. Ethiopia, with its ex-
treme altitudinal topographies—varying from below sea level
to over 4,500 m above sea level (m.a.s.l)—illustrates the di-
versity of agro-ecologies found across tropical Africa (fig. 1A
and B). Three distinct temperature zones are observed in
Ethiopia—cool (dega), temperate (weina dega), and hot
(kolla) (The Library of Congress 1991). The cool zone expands
over the western and the eastern parts of the north-western
Ethiopian plateau with elevation generally above 2,400 m.a.s.l.,
and temperature between near-freezing and 16 �C. Lower
elevations of the plateau (1,500�2,400 m.a.s.l.) constitute
the temperate zone, where temperature varies between
16 �C and 30 �C. The hot zone is located mostly in the eastern
parts of the country, where the elevation is below
1,500 m.a.s.l., and the maximum temperature can reach as
high as 50 �C. A large variation in precipitation—from about
15 to 210 cm per annum—is also observed across the country
(Fazzini et al. 2015). Although some areas receive rainfall
throughout the year, in other parts it is mostly seasonal.
Rainfall is the heaviest and most abundant in the southwest
and generally decreases from South to North, mainly along
the eastern lowlands (The Library of Congress 1991). Different
combinations of temperature and rainfall patterns have cre-
ated a gradation in climatic conditions, which vary from hot-
humid and hot-arid to cold-humid and cold-arid (fig. 1B).

The chicken (Gallus gallus domesticus) is an introduced
species in Africa. Although Egypt provides the earliest icono-
graphic evidence of domestic chicken (Mwacharo et al. 2013),
the oldest African chicken bones were found in Ethiopia at
the Mezber site of Tigray region, dated to around c.921–801
BCE (Woldekiros and D’Andrea 2017). Molecular evidence
supports at least two arrival/dispersion waves for domestic
chickens in Africa (Mwacharo et al. 2013). The first wave likely
came from the Indian subcontinent around 3,000 years ago,
following maritime and terrestrial routes, entering Africa
through today’s Egypt and the Horn of the continent. The
second wave of arrival occurred during the mid-first millen-
nium AD along Africa’s eastern coast, following the maritime
trading routes. This may have brought chicken genetic diver-
sity from as far as Southeast and East Asia (Prendergast et al.
2017). Since its introduction, domestic chicken has dispersed
with human movement throughout Africa and have adapted
to diverse agro-climatic conditions.

Today, backyard poultry farming constitutes an important
economic activity in Ethiopia, providing both income and
nutrition to poor rural households and contributing signifi-
cantly to the national economy. Almost 97% of the country’s
total poultry meat and egg production comes from backyard
farming of chickens by small-holder farmers (Shapiro et al.
2017). Such backyard farming still relies predominantly on
indigenous breeds, characterized by their tolerance to various
local environmental challenges (e.g., extreme climatic condi-
tions such as temperature and precipitation, disease, and pre-
dation) and their ability to forage for food (Getu 2014;
Shapiro et al. 2017; Bettridge et al. 2018). In the absence of
any management practices or breed improvement initiatives,
the productivity of these indigenous chickens, however, is
quite poor compared with commercial breeds raised under

managed farming conditions. Elucidating the genetic basis of
local adaptation of these birds will have important implica-
tions for sustainable improvement of poultry production.

Despite the observational knowledge that African indige-
nous chickens are adapted to their harsh environmental con-
ditions, the genetic mechanisms underlying these adaptations
are still largely unknown (Muchadeyi and Dzomba 2017).
Likewise, little effort has been made to dissect livestock eco-
systems to identify major environmental factors that trigger
adaptive response (Muchadeyi and Dzomba 2017).
Conventionally, environment�genome adaptation studies
have focused on the adaptation to an inferred specific envi-
ronmental stressor, for example, high altitude or heat stress
(Zhang et al. 2016; Cedraz et al. 2017), or in a single ecotype
(Elbeltagy et al. 2019; Walugembe et al. 2019), without ana-
lyzing the environmental stressors of the considered agro-
ecology. In the present study, we are adopting a powerful
integrative approach—combining ecological niche modeling
(ENM) with genomic analyses (selection signature and geno-
type�environment association) to first dissect the environ-
mental drivers of local adaptation and then to investigate
their impact on the genome. We apply this approach across
ecotypes of Ethiopian indigenous chicken populations.

Results

Genomic Diversity of Ethiopian Indigenous Chickens
Genomic data for the present study originated from the
whole-genome sequencing (WGS) of 245 Ethiopian indige-
nous chicken samples from 25 different populations repre-
senting diverse agro-climatic conditions (fig. 1A and B;
supplementary table S1, Supplementary Material online).
Analysis of the WGS data detected 19.5 M SNPs, of which
around 29% are novel. The genetic diversity of the popula-
tions is similar, with 10–12 M SNPs detected per population
and a mean genome nucleotide diversity (p, based on indi-
vidual sites) between 0.28 and 0.34. After applying stringent
quality filtration, we used 14 M autosomal SNPs and 238
individuals for all downstream genomic analyses (see
Materials and Methods).

Principal component analysis (PCA) based on the filtered
variants reveals the structure and relatedness of the 25 pop-
ulations (fig. 1C). Only the Hugub and Jarso populations from
the Rift Valley slope in eastern Ethiopia are clearly separated
from the other populations whereas only a weak substructur-
ing based on geographic closeness is generally observed
among the rest of the populations. Admixture analysis con-
forms to this result by showing contributions from three an-
cestral gene pools, with Hugub and Jarso having a major
contribution from a single gene pool, which has a minor
presence in the other populations (fig. 1D; supplementary
fig. S1, Supplementary Material online). Fst analysis across
all 25 populations shows a weighted Fst of only 0.04, implying
a very low level of population differentiation (see supplemen-
tary fig. S2 for pairwise Fst between populations,
Supplementary Material online).
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ENM Reveals the Environmental Diversity of Ethiopian
Chicken Habitats and Identifies Important
Environmental Drivers of Local Adaptation
ENM is a powerful tool for predicting the distribution of a
species based on the environmental conditions of the species’
known occurrence locations. The distribution models were
built using the maximum entropy algorithm implemented by
MaxEnt (Phillips et al. 2006) with data on 34 different agro-
climatic variables at 250 geographic data points (10 per pop-
ulation). These were considered as “occurrence data.”
Moreover, 10,000 geographic data points from the remaining
of Ethiopia were included as background points, against
which the occurrence data could be projected to create
population-specific environmental suitability maps. The
agro-climatic variables included 21 climatic parameters,
8 soil properties, 4 vegetation parameters, and elevation
data from public databases (supplementary table S2,
Supplementary Material online). These variables were chosen
considering their biological relevance for scavenging chickens,
for example, climatic variables and elevation are expected to
affect physiological tolerance of chicken, soil variables likely
influence the type and abundance of food, and the vegetation
parameters may affect both food availability and exposure to

predation. Accordingly, these variables were considered as
proxies of environmental selection pressures.

In the first step of ENM, we removed variables which are
highly correlated (rs > 0.6; except one from each correlated
group) and/or with low contribution in explaining the
Ethiopian chicken ecosystems (<4%) (supplementary figs.
S3 and S4, Supplementary Material online). It retained only
eight variables: The minimum temperature of the coldest
month of a year (minTemp), precipitation seasonality which
represents the variation in precipitation across a year
(precSeasonality), precipitation in the wettest quarter
(precWQ) of a year, precipitation in the driest quarter of a
year (precDQ), soil organic carbon content (SoilOrgC), grass/
shrub cover (Grassland), proportion of cultivated land
(LandUse), and the dominant cultivated crop in an area
(Crop_dominance). Upon further checking, the Grassland
variable was removed as it showed high multicollinearity
(Variance Inflation factor > 7) with LandUse. We also re-
moved Crop_dominance because of ambiguity and possible
erroneous categorization of some of the data points based on
visual examination in Google Earth.

The final model with the six selected variables produced a
refined estimate of the relative contribution of the variables

FIG. 1. (A, B) Sampling location of Ethiopian indigenous chicken populations in relation to variation in elevation and agro-ecological zones—AEZ
( HarvestChoice 2015); (C) PCA plots of the populations based on 14 million autosomal SNPs; (D) admixture analysis results for K values between 2
and 5 (best K¼ 3).
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(fig. 2A). SoilOrgC shows the largest individual contribution
(24%), followed by the minTemp (21%), whereas LandUse has
the smallest contribution (10%). The three precipitation var-
iables (precWQ, precDQ, and precSeasonality) show a com-
bined contribution of 45%. PCA based on these six variables
spread the populations in the environmental space, showing
large heterogeneity in Ethiopian agro-climatic conditions and
supporting the importance of these variables as environmen-
tal drivers of adaptation (fig. 2B). Geographically close pop-
ulations are generally positioned close to each other with
some notable exceptions, for example, Alfa Midir/Negasi
Amba and Arabo/Adane are geographically close to each
other but distant in the environmental space. In contrast,
Arabo and Jarso appear close to each other in the environ-
mental space even though they are geographically distant
(409 km; figs. 1 and 2B). These outlier pairs show the drastic
change in Ethiopian climate and landscape even within short-
geographic distances. The environmental diversity of Ethiopia
is further illustrated by the environmental suitability maps
(fig. 2C), which describe how similar is the environment across
the country for each of the sampled populations.

Genomic Analyses Identify Candidate Loci for
Environmental Adaptation
With the identification of the important environmental driv-
ers of selection, our next goal was to determine the genetic
basis of adaptation to these factors. Two types of analyses
were performed: 1) Selection Signature Analysis (SSA) by
comparing extreme groups of populations (Low vs. High)
for each environmental predictor (table 1; supplementary
fig. S7, Supplementary Material online), using Fst (Weir and
Cockerham 1984) and XPEHH (Sabeti et al. 2007) approaches

with overlapping sliding windows (20 kb size with 10 kb step)
and 2) Genotype�Environment Association (GEA) using re-
dundancy analysis (RDA), a multivariate linear regression ap-
proach that can simultaneously analyze many loci to detect
weak multilocus signatures of selection (Forester 2019). RDA
was chosen over other GEA methods for its robust perfor-
mance across different sample sizes, levels of population
structure, and demographic histories.

SSA windows with empirical P-value < 0.01 were consid-
ered as putative selective sweeps for a standardized Fst (ZFst)
> 5 or an absolute standardized XPEHH (jXPEHH_stdj) > 3
(supplementary figs. S9 and S10, Supplementary Material on-
line). Moreover, since the positive and negative values of
XPEHH indicate directionality of selection, all SNPs within a
XPEHH-based candidate window needed to show the same
directionality. For Fst-based candidate windows, we deter-
mined the direction of selection based on which group
(Low or High) had the lower value of pooled heterozygosity
(Hp) (Rubin et al. 2010), and/or based on the signs of the
XPEHH value for the corresponding windows (see Materials
and Methods).

Across the different environmental analyses, we observe a
weak positive correlation between the Fst and the XPEHH
results (rs ¼ 0.22�0.34, P< 2.2e�16). A similar observation
has also been reported in previous studies (Ma et al. 2015).
Depending on the environmental variables, Fst identified
71�237 and XPEHH identified 210�405 windows above
the assigned thresholds (fig. 3A). Selective sweep windows
common to both analyses were considered as our strongest
candidates. The number of common windows ranged from 6
(SoilOrgC variable) to 24 (precDQ and LandUse variables) (fig.
3A), but none was found for the precWQ variable (fig. 3A,

FIG. 2. (A) Relative contribution of the six environmental variables selected based on Ecological Niche Modeling (ENM); (B) PCA plots showing the
distribution of the 25 Ethiopian chicken populations in the environmental space provided by the six selected environmental parameters; (C)
suitability maps of the 25 Ethiopian chicken populations produced by ENM using six selected environmental variables. Hotter colors (toward red
spectrum) indicate more suitable conditions.
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supplementary fig. S12, Supplementary Material online). After
merging adjacent windows, 107�168 selective Sweep Regions
(SRs) of 20�550 kb size range were obtained (table 1).
Around 76�90% of the detected SRs overlap with genes
(supplementary table S3, Supplementary Material online).
The SRs harbor a large number of SNPs (�62,000 to
�101,000), but only 1.5�8% show a large difference in allele
frequency (dAAF > 0.5), and only a handful of these
(n¼ 1�35) belong to a potentially functional category (non-
synonymous, splicing, and ncRNA exonic) (supplementary
table S4, Supplementary Material online). Hypergeometric
tests show that intergenic SNPs are over-represented among
those with large dAAF, whereas SNPs within genes

(nonsynonymous, intronic, and UTR) are under-represented
(P< 7.34e�09). The predominance of intergenic SNPs
among high-frequency variants may indicate that regulatory
regions play major roles in adaptation traits. However, it is
also possible that many of the intergenic variants are actually
neutral but were easily hitchhiked to high frequency with
causal variants without having any physiological conse-
quence. Many of the SRs overlap with known QTLs
(ChickenQTLdb), suggesting the affected phenotypes
(fig. 3B; supplementary table S5, Supplementary Material
online).

RDA was performed using a set of genome-wide LD-
pruned SNPs (n¼ 1,210,311) as response variables and the

Table 1. Summary Table Describing the Low and High Groups and Selection Signatures Results from Different Environmental Analyses.

Environmental
Variables

Low Group Populations
and Environmental
Stats (Mean 6 SD)

High Group Populations
and Environmental Stats

(Mean 6 SD)

No. of Selective
Sweep Regions (SRs)

Candidate Genes
(Common XPEHH and
Fst candidates; SSA
and RDA candidatesa)

Minimum temperature of
the coldest month
(minTemp)

AlfaMidir, NegasiAmba
(n 5 20)

Min.T (�C): 1.83 6 1.07
Max.T (�C): 20.61 6 1.20
Elevation (m.a.s.l.):

3219 6 192

Hugub, Mihquan (n 5 20)
Min.T (�C): 12.67 6 0.92
Max.T (�C): 36.11 6 1.18
Elevation (m.a.s.l.):

1077 6 276

114 209 (10; 2)

Precipitation of the wet-
test quarter (precWQ)

Hugub, Jarso (n 5 24)
314.05 6 40.58 mm/m2

Gafera, Gesses (n 5 19)
1088.65 6 18.28 mm/m2

107 150 (0; 1)

Precipitation of the driest
quarter (precDQ)

Gijet, Kido (n 5 18)
9.40 6 0.97 mm/m2

Kumato, Loya (n 5 19)
120.90 6 15.80 mm/m2

168 217 (10; 3)

Precipitation seasonality
(precSeasonality)

Loya, Kumato (n 5 19)
47.8 6 3.62 mm/m2

Meseret, Gijet (n 5 19)
141.20 6 2.97 mm/m2

152 193 (4; 3)

Soil Organic Carbon
(SoilOrgC)

Loya, Kumato (n 5 19)
71.7 6 13.52 g/kg at
depth of 0 m

AlfaMidir, Adane (n 5 20)
145.80 6 7.49 g/kg at
depth of 0 m

145 219 (7; 9)

LandUse Gesses, Kido (n 5 18)
1.28 6 1.65 (%)

Meseret, AlfaMidir
(n 5 20)

39.56 6 1.67 (%)

157 190 (7; 2)

aCommon genes between one of the SSA approaches and RDA; none of the candidate genes were commonly detected by all three approaches (XPEHH, FST and RDA).

FIG. 3. (A) Stacked bar plot showing the split of candidate sweep windows based on Low/High groups and detection methods; (B) overlap of
candidate genes with known QTLs from chicken QTLdb.
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six environmental predictors as explanatory variables.
Conditioning on geography (latitude and longitude) was ap-
plied to correct for spatial autocorrelation and neutral pop-
ulation genetic structure arising from geographic proximity
(Rellstab et al. 2015). In addition, population structure arising
from the different origins of the chicken populations (fig. 1D)
was corrected for by partialling out ancestry-coefficients from
ADMIXTURE analysis. The overall model was highly signifi-
cant (permutation analysis P-value < 0.01), although it
explained only 0.9% of the total genetic variance. This result
is not unusual given that only a small proportion of the 1.2 M
SNPs is expected to be associated with environmental pre-
dictors (Forester 2019). The first five of the six RDA axes were
significant, explaining about 88% of the variance captured by
the RDA model (fig. 4A and B). Therefore, SNPs from the two
extreme ends of the loading distribution (SD > 3.5) at each
significant axis were taken as outliers (n¼ 2,863 in total).
Considering the strongest correlated environmental variable
for each SNP, we found 361�668 outlier SNPs per environ-
mental predictor. The correlation values were generally low to
moderate, ranging between 0.04 and 0.52 (median ¼ 0.20)
(fig. 4C). We applied further filtration of r> 0.3 to retain only
those with relatively large environmental correlation; this
retained only 374 outliers. Since an LD-pruned SNP set was
used in the analysis, it is quite possible that the actual causal
variants were not included. We therefore identified any var-
iants that were in complete LD with the outliers SNPs (r2¼
1). This added another 96 SNPs to the candidate SNP list,
taking the total to 470 (supplementary table S7,
Supplementary Material online). The RDA candidate SNPs
represent 320 gene�environment combinations, ranging
from 21 genes for minTemp to 166 genes for SoilOrgC
(fig. 4D). Only 4.2% (n¼ 20) of these are common with
those detected in either the XPEHH or Fst approach but
none were detected by all three methods (fig. 4E). The
very low overlap between RDA and SSA may be attributed
to two possible reasons. First, RDA was performed using LD
pruned SNP set and it is likely that many environmentally
associated SNPs were not actually tested. Second, RDA
applies a linear regression approach. If the genotype-
environment association is anything but linear, it will not
be detected by RDA.

Adaptation to Extreme Temperatures and High Altitude
The minimum temperature of the coldest month of a year
(minTemp) shows a strong positive correlation with the max-
imum temperature of the warmest month (rs ¼ 0.9) and a
strong negative correlation (rs < �0.91) with elevation
(m.a.s.l.). Therefore, for the SSA, the Low group included
two populations (Alfa Midir and Negasi Amba) living at the
lowest minimum temperature, the lowest maximum temper-
ature, and the highest altitude environments, whereas the
High group included two populations (Hugub and
Mihquan) living at the highest minimum temperature, high-
est maximum temperature and the lower-altitude environ-
ments (supplementary fig. S7, Supplementary Material
online). The majority of the SRs (82%) and the strongest

signals were detected in the Low group providing evidence
in support of adaptation to low temperature and/or high
altitude (figs. 3A, 5B, and 5D; supplementary table S3,
Supplementary Material online). Of the 209 genes overlap-
ping the SRs, ten genes—all in the Low group—were detected
in both Fst and XPEHH analyses. These are considered as the
most significant candidates (table 2). Nine of these genes
(CLP1, YPEL4, ENSGALG00000007381, UBEL6, TIMM10,
RTN4RL2, SLC43A3, PGR2/3, P2RX3) belong to a single SR in
chr5:17250000�17280000 (fig. 5E�G), whereas the remaining
one (UTP18) overlaps the region in chr18:5100000�5120000.

Most of the common genes on chr5 SR can be directly
related to various stress responses induced by high altitude,
such as, hypoxia (Sarkar et al. 2003), thrombosis (Gambhir et
al. 2014), and cold temperature (table 2). For example, CLP1 is
linked to cardiac muscle hypertrophy (Espinoza-Derout et al.
2007), YPEL4 has a role in pulmonary diseases (Truong et al.
2018), P2RX3 and ENSGALG00000007381 are involved in
blood coagulation (Reactome; Uniprot), and SLC43A3 plays
a possible important role in the repair and growth of the lung
tissue under oxidative stress (Furukawa et al. 2015). P2RX3 is
also involved in the sensory response to cold and heat,
whereas PGR2/3 has a role in the immune response
(Uniprot). Other genes, for example, RTN4RL2, and
TIMM10 have been found differentially expressed in cells un-
der hypoxic conditions (Lai et al. 2016; Marchesi et al. 2019),
with RTN4RL2 protecting motor neurons against apoptosis
(Uniprot), which may be an essential adaptation to high
altitude-induced hypoxia. UTP18 from chr18 SR has also
been found differentially expressed in human hypoxic cardi-
omyocytes cell line (Lee et al. 2018) and is involved in the
processing of the pre-18S ribosomal RNA (rRNA). The rRNAs
are important components of ribosome—the factory for pro-
tein biosynthesis (Uniprot).

Some other notable candidates for adaptation to low tem-
perature and/or high altitude, detected with a strong signal
(ZFst > 8 or jXPEHH_stdj > 4) but from a single approach,
include SDK1—which regulate the dendritic spine develop-
ment and synaptic connectivity (Uniprot), TRIM3—involved
in nervous system development and critical cellular processes
such as proliferation, apoptosis, and transcriptional regulation
(Chen et al. 2014), and ARFIP2—with a role in autophagy
(Uniprot).

In the High group, 25 candidate genes were found, but
none were common between Fst and XPEHH analyses. The
only gene that overlaps a strong SSA signal is TOGARAM1
(jXPEHH_stdj> 4) (fig. 5E), which is involved in the assembly
of nonmotile cilia (Nachury and Mick 2019). These organelles
are essential for cellular signal transduction and heat-shock
induces their rapid loss (Prodromou et al. 2012). TOGARAM1
may play an important adaptive role in alleviating this effect
in high temperature conditions.

Ingenuity pathway analysis (IPA) of the 184 candidate
genes from the Low group indicates enrichment of processes
like lipid metabolism, small molecule biochemistry, and mo-
lecular transport (supplementary table S6A, Supplementary
Material online), which are expected as hypoxia or cold-
temperature stresses affect a cascade of biosynthetic and
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molecular processes (Chohan 1984; Hopfl et al. 2003). Low
group candidates are also associated with many cardiotoxicity
terms such as bradycardia, cardiac arrhythmia, heart failure,
congenital heart anomaly, and cardiac enlargement—indicat-
ing involvement in hypoxia stress response. Contrarily, the
genes from the High group show more enrichment for pro-
cesses related to organismal growth and development (sup-
plementary table S6A, Supplementary Material online). Low-
group candidates overlapped with many known QTLs, in-
cluding those related to skin properties, body temperature,
blood parameters, abdominal fat, immune response, and pro-
duction traits. Meanwhile, High group candidates showed
overlap with QTLs for feather properties, disease susceptibility
and immune response, and feed conversion ratio (fig. 3B;
supplementary table S5, Supplementary Material online).

Candidate SNPs from RDA analysis are linked to only 21
genes with correlation to minTemp varying between 0.3 and
0.36. Only two of these genes have also been detected by one
approach of SSA: VMP1—a stress-induced gene involved in
the autophagy process (Uniprot), and SEPT9—a master tran-
scriptional regulator of the adaptive response to hypoxia
(Uniprot) (supplementary tables S7 and S8, Supplementary
Material online).

Adaptation to Extreme Rainfall Patterns
Three of the six environmental parameters found in the ENM
are related to rainfall (PrecSeasonality—variation in

precipitation across the year, PrecWQ—precipitation during
the wettest quarter, and PrecDQ—precipitation during the
driest quarter). Precipitation variables can affect chicken bi-
ology in different ways, for example, insufficient rainfall may
limit access to drinking water, whereas excessive rainfall may
facilitate the spread of pathogens and parasites, challenging
chicken immunity (Afrimash 2018).

Analysis of the precipitation variables provided a strong
indication of adaptation to restricted water as more SRs (61%
of 427 regions) and stronger signals were observed in popu-
lations where water scarcity is likely an issue; for example, in
agro-ecologies with either a low rainfall (Low groups for
precDQ and precWQ) or large seasonal variation in rainfall
(High group for precSeasonality) (fig. 3A; supplementary table
S3, Supplementary Material online). Prolonged water depri-
vation causes dehydration, which can have serious conse-
quences on the overall physiology due to shrinkage of cells,
salt-water imbalance in the body, increased osmotic pressure,
renal dysfunction, and disruption of the temperature regula-
tory cues in the brain (Encyclopaedia of Britannica; Swayne
and Radin 1991).

Analysis of the three precipitation variables detected 500
genes overlapping SRs, with 14 commonly identified in Fst and
XPEHH analyses (table 2). Ten of these genes come from the
precDQ Low group indicating their importance for the adapta-
tion to dry environments where access to water may be an issue
(table 2 and fig. 6). The other four genes come from the

FIG. 4. (A) Variance explained by RDA axes; (B) PCA plot based on RDA axes 1 and 2; (C) Box plots showing the distribution of correlation values of
outlier SNPs associated with different environmental predictors; (D) stacked bar graph showing number of genes linked to RDA outlier SNPs and
their split based on environmental correlation; only genes (with r� 0.3) were finally considered as candidates; (E) Venn diagram showing overlaps
of candidate genes between selection signatures and RDA analyses.
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precSeasonality analysis (table 2), of which two are from the High
group, indicating possible association to water restriction. Closer
inspection of the High group populations (Meseret and Gijet) for
PrecSeasonality confirms not only very little rainfall during the
driest season (average 9.45 mm/m2) but also much lower rainfall
in the wettest season (average 461 mm/m2) compared with that
of all 25 populations (average 697 mm/m2).

The commonly detected Fst and XPEHH candidate genes
affect many biological processes as expected from water scar-
city stress, and they include a number of lncRNA genes with
possible cis-regulatory roles on nearby genes (table 2). Figure
6G highlights the chr3:71840000� 73980000 region from
precDQ analysis as it harbors a cluster of several candidate
genes (n¼ 8; four common between Fst and XPEHH) and
some of the strongest signals. SNPs surrounding MANEA
show the largest difference in alternative allele frequency
(dAAF). This gene has been related to behavioral issues like
panic disorder in human (Jensen et al. 2014), and it is ubiq-
uitously expressed in many tissues, but most prominently in
the urinary bladder and the thyroid (ENTREZ). Another im-
portant candidate from the same region is EPHA7, which is
involved in many gene ontology (GO) biological processes
(Uniprot) including apoptotic process, axon guidance (in re-
sponse to environmental cues), brain development, ephrin

receptor signaling (important in kidney physiology), and
nephric duct morphogenesis.

HTR2C is another common candidate gene from Fst and
XPEHH (table 2), detected from precSeasonality analysis (sup-
plementary fig. S11, Supplementary Material online). This
gene plays a crucial mediatory role in the stress-induced ac-
tivation of the hypothalamic�pituitary�adrenal axis
(Brummett et al. 2014). It is involved in many biological pro-
cesses, including behavioral fear response, regulation of appe-
tite, and regulation of nervous-system processes (Uniprot).

Genes that overlap with strong signals from a single ap-
proach (ZFst > 8 or jXPEHH_stdj > 4) in relation to water
scarcity include: AGTR1, TMEM206, and ATF3. AGTR1 plays a
role in the regulation of blood pressure, sodium retention by
the kidney, and in kidney development (Uniprot). TMEM206
is involved in pH-gated chloride channel activity that helps to
maintain the body’s acid�base balance (Uniprot). ATF3 is a
previously reported common stress-responsive transcription
factor (Uniprot; Zhao et al. 2016).

We detected two common candidate genes from the
precSeasonality Low group, that is, the population showing
low variation in rainfall pattern. CACNB4 has a functional role
in the calcium ion transport (Uniprot), whereas
ENSGALG00000053888 encodes a lncRNA with possible

FIG. 5. Selection signature analysis results for minTemp. (A) Scatter plot of standardized values of XPEHH versus Fst. (B) length distribution of
selective Sweep Regions (SRs). (C, D) Box plots showing the distribution of Fst and XPEHH metrics for noncandidate and candidate windows. (E, F)
Manhattan plots for the XPEHH and Fst analyses; common windows are marked with asterisk and gene names from common windows are shown
in red. (G) Closer look of the common Fst/XPEHH region—chr5:17250000� 17280000—with SNPs showing allele frequency difference (dAAF)>
0.5 between the Low (AlfaMidir, NegasiAmba) and High (Hugub, Mihquan) groups. Genes common between Fst and XPEHH are shown in red.
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Table 2. Genes Detected by Both XPEHH and Fst in Relation to Environmental Adaptations.

Genes and Sweep Regions Relevant Biological Functions for the Candidate Genes

Adaptation to high altitude stresses (hypoxia, thrombosis, and cold tolerance) (Low minTemp)

Chr5:17230000 2 17290000a,b

Gene cluster:
CLP1, YPEL4,
ENSGALG00000007381, UBEL6, TIMM10, RTN4RL2, SLC43A3, PGR2/3, P2RX3

CLP1—linked to cardiovascular function and cardiac muscle hyper-
trophy (Espinoza-Derout et al. 2007); YPEL4—role in pulmonary
diseases (Truong et al. 2018); P2RX3—blood coagulation, responses
to cold, heat and hypoxia (Uniprot); ENSGALG00000007381—blood
coagulation (Reactome); SLC43A3—roles in lung tissue repair and
growth under oxidative stress (Furukawa et al. 2015); PGR2/3—im-
mune response (Uniprot); RTN4RL2—roles in axon regeneration and
protection of motoneurons against apoptosis (Uniprot), and upre-
gulated in myopathy-affected condition in broiler possibly in re-
sponse to hypoxia (Marchesi et al. 2019); UBE2L6: involved in protein
ubiquitination pathway (Uniprot) ; TIMM10—imports transmem-
brane proteins into the mitochondrial inner membrane (Uniprot);
downregulated in hypoxic cells (Lai et al. 2016).

Chr18:5090000 2 5190000a,b

UTP18
UTP18—RNA binding and involved in pre-18S rRNA processing

(Uniprot); belongs to a gene-network targeted by microRNAs dif-
ferentially expressed in human hypoxic cardiomyocytes cell line (Lee
et al. 2018)

Water scarcity adaptation (Low precDQ)
Chr3:71840000 2 73950000a,b (consists of several SRs)
Gene cluster: ENSGALG00000036204 ,
ENSGALG00000025686, MANEA, EPHA7

ENSGALG00000036204—a lncRNA with possible cis-regulatory role on
nearby genes; for example, the nearest gene is MMS22L with role in
DNA damage repair process (Uniprot); ENSGALG00000025686—U6
spliceosomal RNA with possible role in post-transcriptional modifi-
cation; MANEA—associated with panic disorder (Jensen et al. 2014);
EPHA7—involved in many functions, for example, apoptotic process,
axon guidance, brain development, ephrin receptor signaling path-
way, and nephric duct morphogenesis (Uniprot)

Chr3:106430000 2 106510000a,b

MSRA
MSRA -Cellular protein modification, protein repair, response to oxi-

dative stress (Uniprot).

Chr4:74170000 2 74300000a,b

Gene cluster:
ENSGALG00000048521,
ENSGALG00000050078,
ENSGALG00000046053

These lncRNA genes possibly have cis-regulatory functions on nearby
genes; a plausible nearby target is PPARGC1A, which is involved in
many biological functions.

Chr6:25040000 2 25070000a,b

SLK
SLK—mediates apoptosis (Uniprot)

Chr11:18110000 2 18130000a,b

BANP
Multicellular organism development, transcriptional regulation, regu-

lation of signal transduction (Uniprot)

Adaptation to high precipitation seasonality: possible adaptation to water scarcity

Chr4:2730000 2 2750000a,b

HTR2C
Many functions, for example, behavioral fear response, regulation of

appetite, regulation of corticotropin-releasing hormone secretion
and nervous system processes (Uniprot).

Chr4:74280000 2 74310000a,b

ENSGALG00000051573
A lncRNA with possible cis-regulatory functions; the nearest protein

coding gene is ENSGALG00000040208

Possible adaptation to excess rainfall and humidity (Low precSeasonality)

Chr2:114000000_114100000a,b

ENSGALG00000053888
A lncRNA with possible regulatory functions; the nearest gene, YTHDF3

has role in positive regulation of translation (Uniprot).

Chr7:35360000 2 35400000a,b

CACNB4
Calcium transport; ion transport (Uniprot)

Scavenging adaptation to rich source of insect, worm and plant based food (High SoilOrgC)

Chr1:197230000 2 197310000a

Gene cluster:
HBBA, HBE, HBE1, HBBR,
ENSGALG00000052767

HBBA, HBE, HBE1, and HBBR—involved in heme binding, oxygen carrier
activity, cellular oxidant detoxification, protein hetero-oligomeriza-
tion, response to organic cyclic compound (Uniprot).

ENSGALG00000052767—novel protein coding

(continued)
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Table 2. Continued

Genes and Sweep Regions Relevant Biological Functions for the Candidate Genes

Chr10:6820000 2 6870000a,b

Gene cluster:
THSD4,
ENSGALG00000053176

THSD4—has peptidase activity (Uniprot) with possible association with
feed efficiency traits (Yao et al. 2013); ENSGALG00000053176 is a
MiRNA with possible role in RNA silencing and post-transcriptional
regulation of gene expression.

Scavenging adaptation to low surplus of crop and grain-based food (Low LandUse)

Chr1:127750000 2 127980000
Gene cluster:
STS, PUDP

STS—Lipid and steroid metabolism (Uniprot);
PUDP—Nucleotide metabolic process (Uniprot).

Chr1:128960000_129350000a,b

ENSGALG00000052489
Novel protein coding gene

Chr3:34260000 2 34320000a,b

Gene cluster:
SMYD3, KIF26B

SMYD3—Role in transcriptional regulation as a member of an RNA
polymerase complex and in cellular response to dexamthasone
stimulus (Uniprot);

KIF26B—role in cell signaling (Uniprot).

Chr4:56140000 2 56170000a

NDST4
NDST4—Strong association with low abdominal fat content in chicken

(Uniprot).

Scavenging adaptation to crop and grain rich food (High LandUse)

Chr4:75690000 2 75810000a,b

NCAPG
NCAPG—Cell division, mitotic chromosome condensation (Uniprot).

NOTE.—Genes present in close proximity on the same chromosome are shown as clusters (in a few cases this involves separate sweep regions).
aRegions intersecting with highly significant FLK SNPs (P< 0.01) and showing consistent pattern of allele frequency in each Low and High population.
bRegions successfully validated in a new population (i.e., overlapping significant FLK SNP showing consistent pattern of allele frequency with at least 15% difference in allele
frequency between Low and High populations in the validation set).

FIG. 6. Selection signature analysis results for precDQ. (A) Scatter plot of standardized values of XPEHH versus Fst. (B) Length distribution of
selective Sweep Regions (SRs). (C, D) Box plots showing the distribution of Fst and XPEHH metrics for noncandidate and candidate windows. (E, F)
Manhattan plots for the XPEHH and Fst analyses; common windows are marked with asterisk and gene names from common windows are shown
in red. (G) Closer look of the region—chr3:71840000� 73950000—with SNPs showing allele frequency difference (dAAF)> 0.5 between the Low
(Gijet, Kido) and High (Kumato, Loya) groups. Genes common between Fst and XPEHH are shown in red.
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regulatory function. It is not clear what type of stress response
these genes are involved with, but these may be associated
with the adaptation to an environment with high ambient
humidity. We observe that the relative humidity in the
precSeasonality Low group (59�109%) is generally higher
both in the wettest and driest quarters of a year compared
with that in the High group (57�71%) (supplementary fig. S8,
Supplementary Material online). Two other genes overlap
with strong signals in populations experiencing greater rainfall
or lower variation in annual rainfall: PRIM2 (from the precDQ
High group; ZFst > 8) with a role in DNA replication and
GTDC1 (from the precSeasonality Low group; jXPEHH_stdj>
4) showing ubiquitous expression among tissues (Uniprot).
IPA analyses of the candidate genes from both the Low and
High groups (supplementary table S6B�D, Supplementary
Material online) as well as the overlap of the genes with
known QTLs (fig. 3B; supplementary table S5,
Supplementary Material online) indicate their involvement
in a wide range of biological processes.

The RDA analysis identified 105 candidate genes in relation
to the precipitation variables, of which only seven genes were
also detected by one method of SSA and a few candidates
(n¼ 7) are linked to SNPs with relatively larger environmental
correlation (r� 0.4) (supplementary table S8, Supplementary
Material online). Many of these genes are directly involved in
various stress response pathways or processes. For example,
GPC5 is involved in the regulation of the Wnt signaling path-
way (Uniprot), which mediates stress granule assembly in cells
(Lai et al. 2016); HMGCLL1 is involved in the biosynthesis of
ketone bodies that play an important role in maintaining the
body’s redox homestasis in response to environmental or
metabolic stressors (Rojas-Morales et al. 2020); SLK, SLIT3,
and PHLPP1 have involvement in apoptotic processes
(Uniprot); and GDPD1 has been reported to be upregulated
under drought stress in some plant species (Kotrade et al.
2019). GPC5 has also been found associated with renal disease
(Okamoto et al. 2015). Some other genes possibly have roles
in broader physiological adjustments under stressful condi-
tion, for example, PPFIA2—has involvement in nervous sys-
tem processes, MRPL46—encodes a structural component of
the mitochondrial ribosome, and several lncRNA genes with
their potential regulation of neaby genes (supplementary ta-
ble S8, Supplementary Material online).

Soil Organic Carbon—An Indicator of Source and

Abundance of Food for Scavenging Chickens
Soil organic carbon (SoilOrgC) affects the nature and abun-
dance of animal biomass in the soil. A High SoilOrgC will be
characterized by the presence of many earth-dwelling organ-
isms such as insects and worms that are excellent sources of
protein-rich food for chickens. Soils rich in organic carbon also
provide fertile ground for wild vegetation and for growing
crops—equally important for scavenging birds. Only two
chromosomal regions (chr1:197270000� 197290000 and
chr10: 6820000� 6850000) and seven genes—all in the
High SoilOrgC group—were identified in both Fst and
XPEHH analyses (fig. 7). The SR in chr1 overlaps with a cluster

of several heme-binding genes (HBBA, HBE, HBE1, and HBBR)
involved in oxygen carrier activity. The HBE1 gene is also in-
volved in GO biological process: Response to organic cyclic
compound and protein hetero-oligomerization (Uniprot).
The dAAF pattern is mostly homogeneous across these genes,
but a few intronic SNPs from HBE1 show the largest dAAF (fig.
7G). These genes are overexpressed in broilers with severe
myopathic breast muscles, possibly as a response to insuffi-
cient oxygen and oxidative stress (Pampouille et al. 2019).
Accordingly, their expression may be adaptive in scavenging
chickens in response to oxidative stress from food conversion
in high SoilOrgC agro-ecology.

The chr10 region overlaps with two genes, THSD4 and
ENSGALG00000053176 (miRNA). THSD4 has peptidase activ-
ity, and the gene has been found in an Fst-based selective
sweep between Red Junglefowl (RJF) and commercial birds in
a previous study (Qanbari et al. 2019). THSD4 is also a can-
didate gene for a feed efficiency trait in dairy cattle (Yao et al.
2013). It is likely that the peptidase activity of THSD4 plays an
essential role in the metabolism of protein-rich foods available
in high SoilOrgC agro-ecologies. Located within THSD4, the
miRNA gene may be postulated to have a regulatory effect on
its expression.

Other candidates overlapping strong signals from a single
approach in the High SoilOrgC group include DCLK1 (ZFst>
10) with protein kinase activity and possible involvement in
the nervous system and forebrain development, and GALNT7
(jXPEHH_stdj > 4), involved in carbohydrate metabolic pro-
cess (Uniprot). From the Low SoilOrgC group, four genes
overlapped with a strong SR on chr33
(chr33:6470000� 6500000) (ZFst: 9� 12). These include
DRAP1—involved in transcriptional regulation (Uniprot),
RELA—a ubiquitously present transcription factor affecting
many biological processes including cell growth, immunity,
and apoptosis (Uniprot), UQCC3 which plays an important
role in ATP production by mitochondria (Uniprot) and
KAT5—regulating many biological processes including
autophagy under starvation condition (Uniprot). IPA analysis
shows many similar molecular and cellular functions being
affected by genes from both Low and High groups but con-
trasting processes include Cell Death and Survival in the Low
group whereas Cellular Development, and Cellular Growth
and Proliferation in the High group (supplementary table S6E,
Supplementary Material online), indicating the effects of
abundance of food on chicken physiology.

RDA analysis has identified 166 candidate genes for
SoilOrgC. Of these, 9 genes were also detected by one of
the SSA methods and 36 genes showed r� 0.4 (supplemen-
tary table S8, Supplementary Material online). Many of these
genes are involved in the development and processes of brain,
eye, ear, and nervous system (e.g., KIF5C, ZEB2, RAB5A,
TENM3, GABRB3, MDGA1, ACVR2B, FARP1, SPARC), and in
mediating the senses of vision, smell, and taste (ADGRA3) —
all of which are essential for successful foraging behavior (sup-
plementary table S8, Supplementary Material online). Other
important biological processes affected by the major candi-
dates include: growth, development, and reproductive pro-
cesses (SPARC, NUMA1, CDH6, ITGA11, KIF23, PAPPA,
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ACVR2B, CDYL), metabolic processes and feed conversion
(PEX1, PAPPA, FAM13A, EPB41) and transcriptional regulation
(HMGA2, CMSS1, CCNC, COQ3, CDYL, ETV3, PABPC1, and
several lncRNA genes).

Land Use Pattern is an Important Determinant of Food

Abundance for Scavenging Chickens
By-products from the harvesting and processing of cultivated
grains or crops are important sources of plant-based food for
scavenging chickens (Tadelle et al. 2003). Interestingly, from
191 genes overlapping candidate SRs, the majority (72%) are
selected in the Low LandUse group (i.e., populations living in
regions with a low proportion of cultivated land), where sup-
plementation with crops residues and grain is expected to be
less. Only seven genes from five sweep regions are common to
Fst and XPEHH analyses, of which six are from the Low group
(table 2). The Low group genes include two clusters: STS and
PUDP from chr1:127800000� 127830000, and SMYD3 and
KIF26B from chr3:34260000� 34280000. STS, with its role in
lipid and steroid metabolism, is a candidate gene for growth
and feed efficiency traits in cattle (Mukiibi et al. 2019),
whereas PUDP is involved in nucleotide metabolism
(Uniprot). In the second cluster, SMYD3 is involved in tran-
scriptional regulation and cellular response to dexametha-
sone (a corticosteroid hormone) that can affect appetite

(Sarcev et al. 2008), and KIF26B has a role in cell-signaling
(Uniprot). Another common gene from the Low group is
NDST4, which has a strong association with low abdominal
fat content in chicken (Zhang et al. 2012).

NCAPG is the only common gene between the Fst and
XPEHH analyses in the High group (i.e., populations living in
regions with a high proportion of cultivated land). This gene
has been reported to be associated with various growth-
related traits in beef cattle and carcass traits in chicken
(Lindholm-Perry et al. 2011; Ma et al. 2019).

From the Low LandUse group, several genes overlapped
with strong signaling SRs from a single approach (ZFst> 8 or
jXPEHH_stdj> 4) (supplementary fig. S13, Supplementary
Material online), including AGMO which has roles in lipid
metabolism and feed efficiency in chicken (Izadnia et al.
2019), MED8—involved in transcriptional regulation, and
SZT2—involved in cellular response to amino-acid and glu-
cose starvation (Uniprot). From the High LandUse group,
notable genes overlapping with strong SR signals include
ADIPOR2—regulating glucose and lipid metabolism,
SNX10—with roles in gastric acid secretion, bone resorption
and calcium ion homeostasis, and several genes involved in
transcriptional regulation (PRDM5, CBX3, and HNRNPA2B1)
(Uniprot). Some of the largest SRs were detected in LandUse
analysis (300� 550 kb), indicating relatively recent selection

FIG. 7. Selection signature analysis results for SoilOrgC. (A) Scatter plot of standardized values of XPEHH versus Fst. (B) Length distribution of
selective Sweep Regions (SRs). (C, D) Box plots showing the distribution of Fst and XPEHH metrics for noncandidate and candidate windows. (E, F)
Manhattan plots for the XPEHH and Fst analyses; common windows are marked with asterisk and gene names from common windows are shown
in red. (G) Closer look of the common Fst/XPEHH region chr1:197270000� 197290000 with SNPs showing allele frequency difference (dAAF)> 0.5
between the Low (Loya, Kumato) and High (Meseret, Gijet) groups. Genes common between Fst and XPEHH are shown in red.
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events. Interestingly the largest SR
(chr4:25890000� 26440000; 550 kb) was detected in the
High LandUse group, possibly indicating a recent cultivation
of the areas from where the chicken samples originated. This
SR overlap with only lncRNA genes which likely have cis-reg-
ulatory functions on nearby protein coding genes, for exam-
ple, the CBR4 gene which is involved in the fatty acid
biosynthesis pathway (Uniprot). Similarly, most other large
SRs harbor many ncRNA genes (supplementary table S3,
Supplementary Material online).

Strong candidate genes from RDA analysis (r� 0.4 or com-
mon RDA-SSA genes) are involved predominantly in nervous
system processes and visual learning (ITGB1, GABRG3,
STAU2), whereas some genes also have roles in metabolic,
maintenance, and reproductive processes (GDPD4, ITGB1)
(supplementary table S8, Supplementary Material online).

Shared Candidates Between Environmental Predictors
We detected between 150 and 219 genes from sweep regions
in relation to each environmental predictor (table 1).
Interestingly, about 15% of these genes (152 of 1008) are
common to two or more environmental analyses (supple-
mentary fig. S14, Supplementary Material online). The pro-
portion of shared genes between environmental analyses
varied between 0.3% and 14%. Although these shared genes
may represent pleiotropic effects or shared pathways of stress
response as observed with IPA analysis (supplementary fig.
S14C, Supplementary Material online), the low rate of overlap
in general indicates that our environmental analyses have
captured different components of environmental selective
pressures that in turn have shaped genomes distinctively.

In a few cases, the same gene was a candidate in both Low
and High groups for the same environmental analysis, for
example, ZNF451 (precDQ), and four genes (ADGRL3, CIS,
CIR, HMGCLL1) for the SoilOrgC parameter. These genes tra-
verse multiple windows, with separate windows under selec-
tion in the two groups. Selection of different regulatory
elements or use of alternatively spliced transcripts of the
genes in the opposing groups may be responsible for the
results. However, although intronic variants from these genes
show generally the largest dAAFs, none are annotated as
splice variants.

Further Validation of Sweep Regions
To further validate the detected sweep regions, addressing in
particular the possible effects of demography and population
structure on selection signature signal, we performed an FLK
test (Bonhomme et al. 2010) on genome-wide SNPs based on
the same four populations used for each environmental anal-
ysis. FLK corrects for the effects of population structure and
demographic events due to drift by taking into account kin-
ship matrix between populations before identifying loci that
show outstanding variations in frequency. The outlier SNPs
detected in this approach were then intersected with the
sweeps from XPEHH and Fst analyses. The majority of the
843 SRs (n¼ 807; 96%) overlap with at least one FLK-outlier
(P< 0.05) (see supplementary table S3, Supplementary

Material online). Taking the most significant FLK outlier over-
lapping each of these regions, we checked for their consis-
tency in allele frequency in the Low and High group
populations (e.g., if the allele frequency of the SNPs is higher
in each population from one extreme group compared with
the populations in the other group). We find this holds true in
79% of the cases (n¼ 635 of 807 SRs). All the strong candidate
sweep regions discussed above, except two (an XPEHH region
containing TOGARAM1 gene in minTemp analysis and a
common XPEHH-FST region containing STS and PUDP genes
in LandUse analysis), were validated by this approach.

Last but not least, we wanted to confirm our sweep regions
in independent populations. For this, we created a validation
set—for each environmental variable—by taking a new envi-
ronmentally similar population from one group (e.g., Low
group) while taking the most extreme population (that was
originally used) from the other group. We then checked for
the consistency of allele frequency direction (as observed in
the original sets) of the most significant FLK outlier represent-
ing a sweep region in the validation set. About 87% of SRs
validated above (552 of 635) were found consistent in an
independent population (see supplementary table S3,
Supplementary Material online). Again all the strong candi-
dates discussed in the above sections that passed the first
validation, could also be validated in an independent popu-
lation, except two regions (see table 2 and supplementary
table S3 for the validation status of the SRs, Supplementary
Material online).

Discussion
Changes in climatic condition, production environment, and
customer demand are shifting the breeding goals for poultry
from merely improving production traits to also incorporat-
ing welfare, environmental resilience, and disease resistance
traits (Muchadeyi and Dzomba 2017). Free range, organic
production is also gaining customer preference. Indigenous
breeds, with their many adaptive traits including foraging
ability, represent excellent genetic resources that can be har-
nessed for breeding improvement to cater for these emerging
needs. Dissecting the genetic basis of environmental adapta-
tion, however, is difficult due to the complexity of agro-
climatic stressors posing as selection pressures. To address
this issue, our study applied a powerful interdisciplinary ap-
proach to first, disentangle and identify the important agro-
climatic drivers of adaptation from a large array of environ-
mental parameters and then to identify the associated can-
didate regions, genes, and variants using multiple
complementary genomic approaches. In the Fst and
XPEHH-based selection signature analyses, we compared ex-
treme populations in relation with single environmental
parameters. Contrarily, in the RDA analysis we looked for
genotype�environment association across the continuum
of environmental parameters by simultaneously fitting all
variables in the model. This is the first study, to the best of
our knowledge, to perform such rigorous and comprehensive
analysis on a livestock species and more specifically on
chicken.
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Our study has detected strong adaptive signals in relation
to high altitude-induced stresses (viz. hypoxia, thrombosis,
and cold temperature), water scarcity stress due to dry sea-
son, and for the first time, has identified the environmental
proxies affecting scavenging conditions and associated ge-
netic adaptations, reflecting the impact of the nature and
abundance of food on foraging chickens. Interestingly, how-
ever, we did not find notable strong signals for heat stress
adaptation. It is possibly a legacy of the origin and history of
African indigenous chickens, whose ancestors were native
inhabitants of tropical South and South-East Asia and were
already adapted to the hot and humid climates of these
regions (Pitt et al. 2016). However, when introduced to high
elevation regions of Africa, chickens had to rapidly adapt to
the challenges of their new environment, explaining why we
detected more prominent selection signals in relation to
altitude-induced stresses instead of heat-tolerance. As a proof
of concept, we specifically looked at two heat shock genes,
HSP70 and HSP90, which were found in a recent study to be
overexpressed in Brazilian backyard tropical chickens com-
pared with commercial birds (Cedraz et al. 2017). We find
very little allele frequency difference for SNPs across these two
genes between the High and Low temperature groups.
Although a number of SNPs (n¼ 19, all from HSP90) have
reached near fixation (AAF> 0.9) in the High temperature
group, these variants are also present at similar high fre-
quency in other Ethiopian chicken populations including
the Low temperature group. This suggests that the same
haplotype of the above genes is present across all Ethiopian
populations. Given little genetic variation in these genes, it is
highly likely that their expression patterns are regulated by
epigenetic elements. This gains support from the observation
in previous studies that thermal manipulation during chicken
embryonic development improves thermo-tolerance later in
life (Nassar and Elsherif 2018). Further studies combining
transcriptomic and epigenetic data, however, will be required
to establish this.

Comparison of our results with the few other available
adaptation studies on chicken found little overlap among
the candidate genes. For instance, similar to our study,
Zhang et al. (2016) reported candidate genes affecting car-
diovascular and respiratory systems, and immune responses
in Tibetan highland chickens as adaptations to hypoxia, but
none are common with our set. This result may be attributed
to a number of factors. First, rapid adaptation often works on
the “standing variations” in a population (Rees et al. 2020).
Different demographic history of the African and Tibetan
chickens may have offered distinct standing variations for
the natural selection to work on. As a result, even though
the adaptive responses were similar in both instances, the
associated genes were different. Moreover, epistatic interac-
tions and pleiotropic effects of genes may favor selection of
one gene over another in different geographic areas (Ostman
et al. 2012). Selection of different genes in different popula-
tions in relation to high altitude has also been observed in
human studies (Rees et al. 2020). These results illustrate the
plasticity of the genome in its response to environmental
selection pressures.

Among the identified candidate genes for each environ-
mental predictor, only a few may be considered as strong
candidates, as those were detected by multiple approaches
or coincided with extreme signals from a single approach. It
suggests that these environmental adaptations are predom-
inantly under oligogenic control—an observation supported
by other studies as well (Bell 2009; Rees et al. 2020). Also, in
many instances, we have found important biologically rele-
vant candidate genes residing in the same selection region or
at close proximity; for example, we detected nine major can-
didate genes associated with hypoxia, low temperature, and
thrombosis from a single SR in chr5, cluster of eight genes
from chr3 in relation to water scarcity stress, and cluster of
four heme-binding genes detected in chr1 from the SoilOrgC
analysis. Such gene clusters may actually be at the root of
rapid adaptation to extreme environment by being under the
genetic control of one or a few regulatory variants only.
Although further deeper investigation is required, including
the identification of the causative mutations, such results
provide a new framework to explain the rapid adaptation
and success of an ubiquitously adapted species like chicken
to different agro-ecologies. This finding has direct implication
for achieving fast and sustainable improvements in new
breeding programs aiming to produce chicken lines that
will be both productive and well-adapted to the African back-
yard farming system. With predominantly oligogenic regula-
tion of adaptive traits, the best option for achieving genetic
progress would be to combine Genomic Estimated Breeding
Value (GEBV) for production traits with a targeted marker-
associated selection for environmentally adaptive regions of
the genome.

Our study is reporting a low level of overlaps between SSA
and RDA results, with none of the strongly supported candi-
date sweep regions (e.g., regions common to XPEHH and Fst)
intersecting with RDA outliers. Also, most RDA outliers
showed only low to moderate levels of environmental corre-
lation (generally r< 0.5). In a context of extreme environ-
ments, a strong selection for adaptation will be expected,
leading to rapid fixation or near fixation of haplotypes.
Such a signal of positive selection will be detected by
XPEHH and Fst analyses. On the opposite, RDA can only
detect candidates that are showing linear association across
an environmental gradient and not any nonlinear response
that may have occurred under extreme conditions. Much
evidence of nonlinear gene�environment interaction (G �
E) has been observed in agricultural and livestock species as
well as in human disease studies (Ma et al. 2011; Yang 2014;
Carvalheiro et al. 2019). Yang (2014) indeed suggests that
linear functions would account for a small portion of G �
E variation when a wide range of environmental conditions
are tested, which is the case for the Ethiopian landscape, with
its highly diverse agro-ecological niches for chickens.
Therefore, the SSA and RDA approaches used in the present
study should be seen as complementary.

Although ENM has been employed extensively for differ-
ent purposes in wild species and plants, its application in
livestock has been negligible. Ours is among the very few early
studies that have employed ENM for dissecting livestock

Integrated Environmental and Genomic Analysis . doi:10.1093/molbev/msab156 MBE

4281

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/10/4268/6281077 by U
niversity of Stirling user on 20 Septem

ber 2022



ecosystems. This study specifically exemplifies the use of ENM
as a powerful predictive tool for adaptation analysis in live-
stock. Uniquely, it allowed us to first identify the key environ-
mental drivers of selection pressure and then to investigate
the corresponding genome responses, instead of the contrary
approach commonly applied in animal adaptation studies.
Apart from climatic and geographic factors, for example, tem-
perature, elevation, and rainfall, our study identifies other
environmental factors like soil and land use properties as
important parameters in the ecosystems of foraging chickens.
For the first time we show that these variables can be con-
sidered as proxies of scavenging conditions of indigenous
chickens. We envisage many other different applications of
ENM for livestock. For example, environmental characteriza-
tion of populations, as shown in the present study, can be the
basis for characterizing or even defining livestock ecotypes.
Along with the agro-climatic data, any other environmental
variable (e.g., epidemiological) may be included (Vajana et al.
2018). Habitat suitability mapping can be a useful approach
for predicting suitable areas for introducing exotic breeds
(Lozano-Jaramillo et al. 2019) or for predicting the impact
of climatic change on livestock habitats. These can be ex-
tremely valuable in conservation of important livestock ge-
netic resources to meet future demand.

Materials and Methods

Sampling Design
Chicken samples analyzed here consisted of 224 birds from 23
populations (villages or Kebeles) collected for this study and
21 samples from two other populations (Horro and Jarso)
from a previous study (Lawal et al. 2018). The sampled pop-
ulations represent different agro-ecological zones
(HarvestChoice 2015) distributed across 13 districts of
Ethiopia and six of the nine national regional states (supple-
mentary table S1, Supplementary Material online). Blood
samples from 8 to 10 chickens per population were collected
with the logistical support and agreement of the Ethiopian
Ministry of Agriculture and Ethiopian Institute of Agricultural
Research (EIAR). All animal works were approved by the
Institutional Animal Care and Use Committee of the
International Livestock Research Institute (IREC2017-26).
Geographic coordinates (latitude and longitude) of the sam-
pling villages were recorded, providing the entry points for
the collection of environmental data for ENM.

Environmental Data
Environmental data across the Ethiopian landscape were
obtained from several public databases at a spatial resolution
of 30 arc-seconds (�1 km2) (see supplementary table S2 and
supplementary methods for details, Supplementary Material
online).

For each population, we originally recorded a single central
coordinate (e.g., market place) in the village. However, to
capture the environmental condition for the village, we se-
lected nine additional geographic coordinates in separate
grids surrounding the actual recorded location for each pop-
ulation. These grids were within 1.2 km from each other and

were located using Google Earth Pro v7.3. The environmental
data were extracted using the “raster” R package, resulting in a
total of 250 coordinate points from all 25 populations and
these were considered as “occurrence points” for ENM.

Ecological Niche Modeling
ENM was performed using MaxEnt v3.4.1 (Phillips et al. 2006).
The R package “MaxentVariableSelection” (Jueterbock et al.
2016) was used to shortlist the environmental variables. The
optimized model parameters used for ENM included three
Feature Classes, viz. Hinge, Quadratic and Product and a
Regularization Multiplier value of 3.5 (supplementary fig. S5
and further details in supplementary method, Supplementary
Material online). The predictive power of the models was
assessed using the Area Under ROC Curve (AUC) values
(supplementary fig. S6A, Supplementary Material online)
and the importance of the variables in the test and training
data was assessed with a jackknife assay (supplementary fig.
S6B, Supplementary Material online). Habitat suitability maps
were generated using MaxEnt’s cumulative output.

WGS and Data Processing
WGS was performed on an Illumina HiSeqX platform in
paired-end mode with a read length of 150 bp and average
coverage of�40�. Sequence reads were mapped against the
GRCg6a reference assembly using BWA-mem v.0.7.15-r1140
(Li 2013). Variant calling was performed following the GATK
v3.4 best practice protocol (Broad Institute 2015) involving
the Haplotype Caller method and Joint Genotyping of all
samples together. Initial variant filtration was performed us-
ing the VQSR approach (Haas 2015) in GTAK using 1 M val-
idated SNPs (Kranis et al. 2013) and �20 M known chicken
SNPs (Ensembl release 92).

Genomic analyses were performed using only autosomal
variants. Individuals with high relatedness (>0.9) were re-
moved based on relatedness calculation in VCFtools v0.1.15
(Danecek et al. 2011). SNPs that did not pass the following
criteria were excluded: Genotype quality �15, depth of cov-
erage �3, and missing genotype rate <20%. Nucleotide di-
versity was calculated using the –site-pi option in VCFtools.
PCA was performed using the Eigenstrat method in Eigensoft
v6.1.4 software (Price et al. 2006). Admixture analysis was
performed in ADMIXTURE programme v1.3.0 (Alexander et
al. 2009) with K values 1�5. The best K value was chosen
based on the cross-validation method (supplementary fig. S1,
Supplementary Material online).

Selection Signature Analysis
Extreme Low and High groups of populations were chosen by
ranking the 25 populations for each environmental parame-
ter and selecting 2 populations from each end of the grada-
tions. Combining two populations per group was a deliberate
attempt to mitigate any potential bias from population struc-
ture and demographic events (see supplementary method
“Mitigating the effects of population structure and demo-
graphic events on selection signature,” Supplementary
Material online).
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SSA was performed in overlapping sliding windows with at
least 10 SNPs. Fst analyses were performed in VCFtools using
the Weir and Cockerham approach (Weir and Cockerham
1984). The weighted Fst values were standardized (ZFst) to
allow setting the same threshold across analyses. XPEHH anal-
yses were carried out using the Hapbin package (Maclean et
al. 2015) after removing SNPs with missing genotypes. XPEHH
analyses were first performed for individual SNPs and then
mean values were calculated within windows for both the
standardized XPEHH (XPEHH_std) and the absolute value of
XPEHH_std. Fewer windows were analyzed in XPEHH
(91.2K�91.6K) compared with Fst (92.4K�92.5K) due to
the application of some extra filtration steps (see supplemen-
tary methods for details, Supplementary Material online).
Empirical P-values were calculated for both Fst and XPEHH
by ranking the windows based on each metric.

Pooled heterozygosity (Hp) (Rubin et al. 2010) in windows
was calculated for Low and High groups separately to provide
an extra source of support for the directionality of selection.
Hp results were consulted when directionality could not be
established from the XPEHH result unambiguously or because
those windows were not analyzed in XPEHH. Windows were
removed from the downstream analysis when the direction-
ality could not be resolved.

As a further validation approach, an FLK test was per-
formed on genome-wide SNPs using the package hapFLK
v1.4 without specifying any outgroup.

Redundancy Analysis
RDA was performed in Vegan v2.5-4 in R (Oksanen 2015)
following (Forester 2019) (further details are in supplemen-
tary method and codes used are in supplementary file
“SI_code_and_results_RDA,” Supplementary Material
online).

Functional Interpretation of SRs, Candidate Genes,
and Variants
The putative SRs were intersected with known genes from
Ensembl (release 98) using Bedtools v2.26 (Quinlan and
Kindlon 2017). Candidate genes were checked for their over-
lap with known chicken QTLs (ChickenQTLdb). Only signif-
icant QTLs with size <1 Mb were considered. Candidate
genes were also analyzed for their molecular and cellular
functions, and physiological processes using IPA (QIAGEN
Inc.). SNPs within SRs were annotated using ANNOVAR
(Wang et al. 2010). Hypergeometric tests for under- or
over-representation of the SNP annotation categories were
performed with R “phyper” function.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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