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ABSTRACT This comprehensive review delves into the importance of hedgerows in urban green spaces,
emphasizing their significant role in sustainable development and providing ecological benefits. Accurate
identification and characterization mapping of hedgerows are vital for effective land management, urban
planning, and conservation efforts. The article explores the challenges associated with identifying hedgerows
in urban environments and the complexities they present for automatic detection. It discusses the limitations
of traditional methods and showcases the potential of advances in remote sensing technologies and artificial
intelligence (AI) methods, such as deep learning algorithms. Results indicate that deep learning can generally
achieve an accuracy of 75% for hedgerow identification. This review article sets out a vision for the future
of hedgerow detection and monitoring.

INDEX TERMS Hedgerow, remote sensing, machine learning, deep learning, synthetic aperture radar,
LiDAR.

I. INTRODUCTION
Hedgerows are essential features in many landscapes of the
world [1], [2], [3], [4]. Hedgerows comprise various ele-
ments, including hedges, trees, walls, fences, and gates. These
features can vary greatly, from ancient to newly planted,
and may consist of a single or multiple species. However,
the definition of hedgerows varies according to studies, and
this disparity is a problem for extracting hedgerows from
satellite images because the maps obtained are based on
different characteristics, often making them incomparable
[5]. Different studies use various names and criteria to define
hedgerows. Some studies may focus on specific aspects, such
as mapping woody vegetation or delineating linear features
adjacent to fields, without considering the specific species
composition. This lack of standardized terminology and
criteria makes it difficult to compare and integrate the results
from different studies. Hedgerows fall into two categories:

• Managed: where trees no longer take their natural shape
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• Relict: where trees were planted as hedges but are no
longer managed.

To provide a more nuanced understanding of hedgerow
types, Neumann et al. [6] further categorized them into four
distinct types based on their structural characteristics and the
intensity of management:

• Type 1: this category includes low-lying, intensively
managed hedges, typically flailed. These hedges contain
no trees or woody elements and are characterized by a
height of up to approximately 1.5 meters and an average
width of 2.5 meters. Their primary functions are often
aesthetic or boundary-setting, rather than ecological.

• Type 2: hedges in this category contain small or juvenile
trees, as well as taller, shrub-like species. They are
less intensively managed than Type 1 and typically
exceed 1.5 meters in height, with an average width of
7 meters. Their increased structural complexity provides
enhanced habitat opportunities compared to Type 1.

• Type 3: this type features hedges with mature trees,
which, when viewed from above, resemble linear strips
of broadleaved woodland. With an average width of
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15 meters, these hedges offer significant ecological
benefits, including habitat for various wildlife species
and improved landscape connectivity.

• Type 4: this type consists of a line of usually planted
trees, which may not conform to traditional hedge
characteristics. These may have clear spaces between
individual trees or represent a defunct hedge with notice-
able gaps. While they provide some ecological value,
their fragmented structure limits their effectiveness as
habitat corridors.

Often planted as boundary lines around areas like farm
fields or gardens, hedges are much more than valuable
dividers. In agricultural landscapes, it is widely recognized
that features such as trees outside forest (hedges, copses,
scattered trees, small remnant woodlots, Bocage, etc.) play
an essential role in the conservation and restoration of
biodiversity [7]. Hedgerows play a critical role in providing
food resources for wildlife, serving as habitats for important
species like pollinators and natural enemies of pests [2],
[8]. Flowers, in particular, are essential sources of nectar
for pollinators, producing berries that are a food source for
resident and overwintering birds [9]. However, agricultural
intensification can negatively impact hedgerows, resulting
in habitat loss and disruption of connectivity [10]. These
green veining elements serve as essential habitats, movement
corridors, and refuges for various species that rely on
hedgerows for survival [11], [12], [13], [14], [15]. However,
hedgerows can act as barriers for some species while
providing corridors for others. For example, hedgerows can
act as barriers for butterflies like Lysandra bellargus [16] but
serve as corridors for forest carabid beetles [17]. The scale
of these corridors can vary, from kilometers for mammals to
meters for insects [18], [19].
Research on the impacts of increasing hedgerow extent

has shown primarily positive effects on the studied species,
although there have been relatively few publications on this
topic. For example, doubling the total length of hedgerows
has significantly improved connectivity for European hedge-
hogs (Erinaceus europaeus), a species of conservation
concern [20]. Studies also suggest that having a high density
of flowering hawthorn and blackthorn hedgerows, combined
with later-flowering habitats, can support healthy populations
of six wild bee species [21]. For birds, there is an increase
in species richness with hedgerow extent up to 8 km/km2
[22]. Additionally, hedges are considered crucial structures
for promoting bird diversity [13]. To ensure that grassland
bird species are supported, having approximately 9.5 km/km2
of hedgerow is recommended, allowing for the retention of
large enough grassland patches [23].

In addition to its positive impact on biodiversity,
hedgerows serve various functions, including controlling
physical, chemical, and biological flux (such as protecting
water and preventing erosion), acting as a windbreak, and
serving as a barrier [24]. These semi-natural elements are
crucial in agricultural landscapes and hold cultural and
historical significance. They play a vital role in connecting

FIGURE 1. Different types of hedgerows identified through aerial
photography [28].

landscapes and contribute significantly to halting biodiversity
decline and addressing climate change. While the definition
of a hedge may vary depending on the involved species,
it typically refers to a dense row of small trees, shrubs, and
bushes [25]. Some alternative definitions include those from
Forman and Baudry [7], who describe hedgerows as narrow
strips of woody plants that separate fields, and French and
Cummins [26], who define it as a combination of a hedge
and a hedge-bottom used for farming boundaries. Baudry
and Jouin [5] defined a hedgerow as ‘‘a linear element of
the landscape composed of trees or shrubs and managed
by man’’. In the National Forest Inventory, hedgerows are
classified as woody treelines found at the edges of forests,
around agricultural fields, or near settlements [27].

Given the advantages of hedgerows, there is an increased
interest in identifying them as a means to protect them.
The use of satellite remote sensing in detecting hedgerows
has received increasing attention in the last decade [29],
[30], [31]. This growing interest is motivated by the critical
ecological role of such natural objects [24]. However,
hedgerows can vary significantly in structure at both the tree
and hedgerow scales, depending on the landscape [32]. This is
due to differences in species composition, vegetation density,
and management practices as shown in Fig 1. The functions
of hedgerows are heavily influenced by their structure [33].
Despite their positive impact, the abundance of hedgerows
in Europe has decreased due to factors such as agricultural
intensification and the effects of World War II [34], [35],
[36]. Several European countries have implemented financial
incentives to combat this decline to promote sustainable
farming practices, including hedgerow maintenance [35],
[37]. For example, in France, there is a need for the
mapping of ‘‘green belt networks’’ or green infrastructures,
as highlighted in the ‘‘environment round table’’ [38].
Farmers in the European Union must maintain hedges on

their farms to be eligible for funding [30], and several other
countries have integrated the protection of hedgerows into
their Good Agricultural and Environmental Conditions [39],
[40]. However, enforcing and monitoring these regulations
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FIGURE 2. Examples of different hedgerow classes in an urban area
(Photo credit: M. A. Pirbasti).

at regional, national, and international levels is necessary
to prevent the ongoing loss of biodiversity and the services
and natural capital supported by biodiversity [41], [42]. For
example, the UK’s Research and Innovation (UKRI) invest-
ment in the Land Use for Net Zero (LUNZ) initiative, which
encompasses the protection and restoration of woodlands,
including hedges, underscores their ongoing significance in
achieving sustainability objectives such as the target of net
zero emissions by 2050 [43]. Moreover, hedges are pivotal in
three United Nations Sustainable Development Goals (SDG):
sustainable cities and communities (No. 11), climate action
(No. 13), and life on land (No. 15) [44]. Their contribution
to these goals, promoting biodiversity, mitigating climate
change, and fostering a healthier environment for humans
and wildlife, cannot be overstated. Hence, prioritizing the
preservation and conservation of hedges is paramount to
advancing these global aspirations.

A. HEDGEROWS IN URBAN ENVIRONMENTS
While there are many studies focusing on hedgerow detection
and analysis in rural landscapes, we have identified a
lack of research for understanding hedgerows in the urban
environment. Urban green spaces play a crucial role in
enhancing the quality of life in cities by providing various
environmental, social, and economic benefits [45]. Diverse
vegetation types, including trees, shrubs, and herbaceous
plants, often characterize these spaces. One important feature
of urban green spaces that has gained increasing attention in
recent years is the presence of hedgerows [46]. Hedgerows,
traditionally used in rural landscapes for delineating bound-
aries and providing wildlife habitat, are now recognized for
their significance in urban settings [46].
As in the rural context, hedgerows in urban green spaces

serve as important corridors and refuges for biodiversity.

They provide habitat and shelter for various species, includ-
ing birds, small mammals, insects, and plants [22], [47]. The
linear structure of hedgerows creates connectivity between
fragmented patches of green spaces, enabling the movement
and dispersal of wildlife across urban landscapes. These
green corridors can act as stepping stones, facilitating species
migration and colonization, thus promoting biodiversity
resilience in urban environments. Furthermore, hedgerows
harbor diverse plant species, contributing to local plant
biodiversity and supporting pollinators, such as bees and
butterflies, essential for urban agriculture and ecosystem
functioning [48].

Hedgerows in urban green spaces offer various ecosystem
services that benefit humans and the environment. Firstly,
hedgerows act as natural windbreaks, reducing wind velocity
and providing shelter to nearby areas, including residential
neighborhoods and gardens. This wind mitigation function is
essential in urban areas prone to strong winds and storms.
Additionally, hedgerows play a crucial role in regulating
microclimates by providing shade and reducing the urban
heat island effect, thus mitigating heat stress and enhancing
urban climate resilience [49]. Moreover, hedgerows act as
effective filters [50], [51], mitigating air pollution by cap-
turing particulate matter and absorbing gaseous pollutants,
thereby improving air quality in urban environments. Lastly,
hedgerows enhance water management by reducing soil
erosion, promoting groundwater recharge, and improving
stormwater management through their ability to absorb and
retain excess rainfall [52].

Beyond their ecological functions, hedgerows in urban
green spaces also have a positive impact on human well-
being [53]. Green infrastructure, such as hedgerows, has
been associated with various mental and physical health
benefits. Research has shown that exposure to green spaces
and natural environments can reduce stress, improve mood,
and enhance cognitive function [27]. With their aesthetic
appeal and diverse flora and fauna, hedgerows provide
nature-based recreation and relaxation opportunities, con-
tributing to improvedmental well-being and overall quality of
life for urban residents. Furthermore, hedgerows act as visual
screens, creating a sense of privacy and tranquility in densely
populated urban areas.

However, it is crucial to detect and map hedgerows to
comprehend their ecological impact in urban environments
and promote the development of sustainable spaces. By iden-
tifying and mapping hedgerows, we can preserve valuable
habitats, enhance urban biodiversity, improve ecosystem
services, mitigate the effects of climate change, and create
visually appealing and livable cities. Urban environments
present unique challenges for hedgerow detection due to
the complexities of the landscape. Unlike rural areas with
more prevalent and distinct hedgerows, urban landscapes are
characterized by fragmented and mixed vegetation types.
In urban areas, vegetation is often fragmented, with smaller
patches of green spaces scattered throughout the built
environment [54]. This fragmentation makes it challenging to
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identify and delineate hedgerows accurately [55]. Moreover,
urban landscapes often contain a mixture of vegetation types,
including trees, shrubs, and grass, which further adds to the
complexity of distinguishing hedgerows from other forms of
vegetation [56].
Another challenge in urban hedgerow detection is the

presence of man-made structures, such as buildings, roads,
and infrastructure. These structures can cause occlusions,
obstructing the view of hedgerows from remote sensing
platforms. As a result, the identification and mapping of
hedgerows become more challenging, as they may be par-
tially or entirely hidden by these structures [57]. Traditional
methods, such as field surveys and aerial photography, often
struggle with accuracy and scalability, frequently requiring
extensive data labeling due to the complexities of urban
environments. However, recent advances in remote sensing
technology andmachine learning have significantly enhanced
detection and classification capabilities [58]. Various data
sources and methodological strategies have been developed
in recent years to map urban tree cover or green vegeta-
tion [59]. Many studies have used a combination of very
high spatial resolution (VHSR) imagery and/or airborne
LiDAR to map green vegetation, including hedgerows [60],
[61], [62]. However, they did not examine the extracted
classes in detail so that the accuracy of their work could be
compared.

Advanced remote sensing techniques and data fusion
approaches can be employed to address this challenge.
These techniques involve integrating data from multiple
sensors, such as high-resolution optical imagery, synthetic
aperture radar (SAR), and Light Detection and Ranging
(LiDAR) [28]. Combining data from different sensors
makes mitigating the occlusion effects caused by buildings,
roads, and other structures possible, thus improving the
detection and mapping of hedgerows in urban environ-
ments. Developing innovative algorithms and methodologies
tailored explicitly for urban hedgerow detection can also
help overcome occlusion challenges. These algorithms can
leverage advanced techniques like machine learning [63],
[64] and computer vision algorithms [65], [66], [67] to extract
hedgerow features from remotely sensed data, even in the
presence of occlusions.

The remainder of this paper is organized as follows.
Section II describes the review methodology. Section III
describes state-of-the-art hedgerow mapping with remote
sensing sensors. In this Section, we discuss multispectral and
radar remote sensing in hedgerowmapping. The separate task
of identification of hedgerows in remote sensing imagery
is introduced and reviewed in Section IV; Characteristics
of hedgerows with remote sensing, textural features, fractal
analysis, spatial auto-correlation, and wavelet transforms
are presented in this Section, followed by a description of
detecting hedgerows using AI techniques in remote sensing
imagery. Finally, we conclude this article in Section V with a
discussion of how the field can advance.

FIGURE 3. Graph depicting the annual publication count of research
papers on hedgerow mapping using remote sensing observations.

FIGURE 4. The number of articles (percent) published in the field of
hedgerow mapping by subject area.

II. REVIEW METHODOLOGY
The methodology for selecting papers for this review article
follows a rigorous and systematic approach. The initial
step involved conducting a comprehensive literature search
using reputable academic databases, such as ResearchGate,
IEEE Xplore, and Google Scholar. To ensure a compre-
hensive search, a range of relevant search terms were
employed, including ‘‘Hedgerows’’, ‘‘Remote Sensing’’,
‘‘Machine Learning’’, ‘‘Deep Learning’’, ‘‘Woody Vegeta-
tion’’, ‘‘Detection’’, ‘‘Very High Resolution’’, ‘‘Hedges’’,
‘‘LiDAR’’, ‘‘SAR’’, ‘‘Object Detection’’, and ‘‘Convolu-
tional Neural Networks’’. The search was limited to papers
published between 1985 and 2024 to encompass classic and
more recent advancements in the field.

The inclusion criteria for paper selection were stringent
and carefully applied. Only papers directly relevant to
hedgerow monitoring using remote sensing observations
and techniques were considered, while those focusing
on unrelated topics or lacking substantial insights into
hedgerow detection and characterization were excluded.
Only peer-reviewed journal articles were included to ensure
the reliability and validity of the research findings, while
conference papers, book chapters, and non-peer-reviewed
sources were not included. Finally, papers published within
the specified time frame were considered.

Following the literature search, the selected papers
underwent a meticulous review and evaluation process,
taking into account their research content, methodology, and
relevance to the objectives of this review article. As seen
in Figs. 3 and 4, the papers were grouped based on their
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thematic focus and key findings. This approach allowed
for a structured and coherent presentation of the research
findings, enabling the identification of common themes,
challenges, and opportunities in hedgerow monitoring using
remote sensing. The rationale behind grouping the papers
into sections was to provide readers with a well-organized
and comprehensive review of the literature. Each section
addresses a specific aspect of hedgerow monitoring, such as
challenges related to identification, the utilization of machine
learning and deep learning algorithms, the complexities of
landscapes, and so on. This systematic arrangement enables
readers to navigate through the different topics and gain a
comprehensive understanding of the current state of research
in the field.

III. HEDGEROW MAPPING WITH REMOTE SENSING
SENSORS
A. OPTICAL REMOTE SENSING IN HEDGEROWS MAPPING
Optical remote sensing, employing passive sensors, has
emerged as a pivotal tool for mapping hedgerows with
enhanced precision and efficiency [68]. These sensors
capture electromagnetic radiation reflected or emitted by
objects on the Earth’s surface, providing valuable insights
into various ecological parameters of hedgerow landscapes.
By capturing data across multispectral bands, optical sensors
facilitate the analysis of phenology and biodiversity dynamics
within hedgerow networks [69]. These satellite sensors offer
superior spectral resolution compared to other remote sensing
technologies, enabling detailed characterization of vegetation
types, health, and structure within hedgerow ecosystems.

Mapping different vegetation cover types and measuring
their biodiversity primarily relies on vegetation indices that
combine reflectance values at two or more wavelengths [70].
For instance, multispectral satellites are equipped with a
few spectral bands, allowing for the discrimination of subtle
differences in vegetation composition and health. Moreover,
advanced passive satellites like hyperspectral sensors feature
even higher spectral resolutions, boasting over 200 bands
[71]. This expanded spectral coverage empowers researchers
to conduct in-depth analyses of hedgerow dynamics, includ-
ing spatial distribution, species composition, habitat quality,
and ecological interactions.

In recent years, passive satellite sensors have been engi-
neered to record a higher number of carefully selected wave-
lengths [72]. For example, the red edge band of the Pleiades
Neo satellite, where there is a rapid increase in reflectance
from the red to near-infrared (NIR) reflectance, correlates
strongly with hedge chlorophyll content and can indicate
vegetation change [73]. The inclusion of measurements made
in a red-edge channel serves as a reliable indicator of
foliar chlorophyll content and vegetation change, aiding in
the assessment of plant chlorophyll concentration, leaf area
index, and change status. Hyperspectral remote sensing data,
recording a larger number of wavelength bands, can offer

FIGURE 5. Spatial resolution comparison (false color composite: R = NIR,
G = RED, B = GREEN) among QuickBird (A), RapidEye (B) and Landsat-8
(C) [75].

the opportunity to define new vegetation indices tailored to
specific species and/or parameter applications [74].

Although increased spectral resolution benefits species
composition analysis at a single point in time, a time series
of imagery acquired throughout the growing season provides
maximum information on yields and management [75]. The
phenological stages of hedgerows progress rapidly during the
growing season due to factors such as weather, germination,
management strategies, and pruning [76]. Leveraging tem-
poral data allows researchers to assess spatial distribution,
monitor changes over time, and inform conservation strate-
gies aimed at preserving these vital landscape features [77].

Increased temporal frequency of image acquisition is
advantageous in countries with cloud-dominated climates,
where multiple overpasses may fail to generate ground
images [75]. However, there is typically an inverse relation-
ship between the frequency of image acquisition and the
swath width of the sensor and its spatial resolution. This often
results in sensors acquiring daily images at resolutions of
300–1000 meters, which may be sufficient for large range
land areas but too coarse for imaging urban areas. In such
cases, in-situ data validation discrepancies arise during up
and downscaling for multisensor data integration [75].

Access to images with high spatial resolution is essential
for hedge identification Fig. 5 illustrates the false-color
composite of the target area, where small-scale differences
in growth are more evident in a 2.4m Quickbird image than
in a 6.5m RapidEye image and almost impossible to detect in
a 30m Landsat-8 scene.

Several high and very high-resolution sensors launched in
the last decade enable the detection of intrafield variations.
When multiple identical instruments are in a constellation,
a time series of cloud-free imagery can be maintained.
However, the imaging scale remains a complex and dynamic
topic in remote sensing, which will be further discussed in the
following sections.

B. LIDAR REMOTE SENSING IN HEDGEROWS MAPPING
LiDAR, an acronym of ‘‘light detection and ranging’’ is
a remote sensing technology that utilizes laser pulses to
measure distances and create detailed three-dimensional
representations of the earth’s surface. By emitting short
pulses of laser light and measuring the time it takes for these
pulses to bounce back after hitting an object, LiDAR systems
can accurately determine the distance to various surfaces,
such as buildings, trees, and the ground. This technology
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provides information about objects’ shape, elevation, and
even composition within their line of sight [78].
An airborne or ground-based LiDAR system is employed

to collect LiDAR data. The system emits laser pulses and
records the time for the reflected pulses to return. Combining
these time measurements with the known speed of light
can calculate the distance to the objects [79]. Additionally,
LiDAR systems often include scanners that allow the laser
beam to be directed in multiple directions, enabling the
creation of highly detailed 3D point clouds. These point
clouds can be further processed to generate digital elevation
models and terrain maps or extract information about
vegetation density [80]. For example, as shown in Fig. 6,
scientists at the UK Center for Ecology and Hydrology
(UKCEH) recently reprocessed high-resolution LiDAR data
collected by the UK Environment Agency to create this new
map of hedgerows. Their development produced the first
hedgerow length and height map with this data.

Laser scanning and LiDAR have long been recognized
as valuable tools for national biomass inventories. For
instance, Rosier et al. [81] developed a workflow using
LiDAR data to delineate and characterize hedgerows and
tree lines in agricultural landscapes. However, the need for
aircraft-mounted systems poses a cost barrier to operational
use. A green low-carbon agri-environment scheme (GLAS)
and an experimental space-borne laser scanner have been
utilized for biomass retrieval. However, its footprint size
and acquisition geometry are unsuitable for fragmented
landscapes like Western Europe.

Malinowski’s research utilizes LiDAR datasets (DK-
DEM/Point Cloud) alongside their derivatives to identify and
delineate selected landscape components, such as hedgerows,
single trees and groups of trees, stone and earth dikes,
and ditches [82], similar to the previous EPA study [25].
Airborne Laser Scanning data collected during 2014–2015
in Denmark, featuring 0.15m horizontal precision and
0.05m vertical precision, were employed to generate a
normalized digital surface model (DSM) and FieldBlocks,
the Danish adaptation of the Land Parcel Identification Sys-
tem (LPIS). Condition assessment requires high-resolution
LiDAR derived point cloud data (to derive hedge height,
width, and gap). Various methods of how ground-based
LiDAR can be used for monitoring hedge conditions have
been proposed to date [83], [84].
Also, the SAR X-band has shown promise for estimating

forest/hedgerow biomass by deriving above-ground elevation
information. Information on the vegetation height is extracted
by calculating the difference between the radar-extracted
elevation values and the ground surface elevations from
an existing digital terrain model (DTM) [85]. Additionally,
polarimetric indicators from RADARSAT-2 or TerraSAR-X
are valuable for estimating crop phenological stages, height,
and biomass [86], [87], [88], [89]. Betbeder et al. [1]
conducted a study using SAR imagery to detect hedgerow
networks and characterize the heterogeneity of hedgerow
canopies. They utilized an object-oriented (OO) method with

FIGURE 6. The extent and height of woody linear features, including
hedgerows, tree lines, and semi-natural thickets of shrubs and trees,
on field boundaries in West Oxfordshire, England [94]. This was produced
by the UK Center for Ecology and Hydrology (UKCEH) based on the
Environment Agency’s LIDAR product, captured in 2016-2021, to create a
model of woody field boundaries classified by height [95].

two polarimetric parameters, single bounce and Shannon
entropy, extracted from a TerraSAR-X image. The study
compared field measurements of hedgerow canopy hetero-
geneity with backscattering coefficients and three polarimet-
ric parameters derived from the same image. The findings
indicate a high classification kappa accuracy of 0.92 for
identifying hedgerow networks and their fragmentation. The
high kappa value obtained in this study should be interpreted
cautiously due to concerns regarding the suitability of point
samples for capturing linear features accurately [90], [91].
The accuracy assessment was based on whether a point
intersected with a hedge rather than correctly identifying it
as an object. It is crucial to note that a sampling ratio of
50/50 between hedges and non-hedges is not appropriate,
as it does not reflect the actual distribution of hedgerows in
the study area. The authors highlight that errors may arise
from some hedges falling below the pixel threshold and
from layover artifacts caused by hedge/sensor orientation.
Furthermore, the study did not include the hedges’ height,
volume, or biomass measurements.

A recent literature review examining the constraints of
object-oriented classification discovered that OO techniques
yielded results that closely aligned with the spatial arrange-
ment of non-forest trees, surpassing visual interpretation.
However, pixel-based methods were deemed more precise in
generating comprehensive coverage estimates [92], [93]. The
authors identified the lack of an accepted accuracymethod for
OO approaches and recommended ‘‘targeted assessment’’,
looking at small sub-rates in an image to see how well the
sub-map mirrors reality using patch metrics.

C. RADAR REMOTE SENSING IN HEDGEROWS MAPPING
Radar, an acronym for Radio Detection and Ranging, Radar
remote sensing utilizes electromagnetic energy backscattered
from ground targets to extract physical and dielectric
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behavior. The advantage of radar imaging lies in its capability
of all-hour and all-weather imaging [96].

Radar systems like SAR emit radio waves, typically in
the microwave portion of the electromagnetic spectrum,
and analyze the echoes reflected back from objects on the
Earth’s surface. The radio waves penetrate the atmosphere
and interact with the target, causing a portion of the energy
to be scattered back toward the radar system. The time
the echo returns to the radar receiver provides information
about the distance to the target [97]. However, radar remote
sensing goes beyond distance measurement. The intensity
and phase of the echo carry valuable information about
the physical properties of the target, including its surface
roughness, composition, and geometry. The data is collected
as SAR images, representing the backscattered energy from
different targets. By analyzing these properties, SAR can
create detailed images or extract specific interest features or
maps of the observed area [98], [99].

Radar data acquisition involves transmitting radio waves
in a specific frequency band and detecting the echoes using
sophisticated receivers. The data is collected as radar images,
representing the backscattered energy from different targets.
These images can be further processed to enhance the
information content or extract specific interest features [99].
As shown in Fig. 7 radar technology operates in various

frequency bands, such as X-band, C-band, and L-band, each
with its own advantages and trade-offs. For example, lower
frequency bands like L-band can penetrate vegetation and
soil, providing information about subsurface features [100].
Higher frequency bands like the X-band offer better resolu-
tion, allowing the detection of smaller objects or finer details
on the Earth’s surface [101].
There are several recent reviews of forest biomass esti-

mation in the remote sensing literature. Lu et al. [102] give
a general review of all remote sensing methods, but several
radar-specificmethods have also been published [103], [104].
A radar biomass review by Sinha et al. [105] comprehensively
overviews current systems, particularly emphasizing biomass
saturation and methods to overcome it. Literature covering
the extensive use of C, L, and X-band obtained from satellite
platforms (differing wavelength and frequencies) radar data,
from fine to coarse resolution, for forest resource monitoring
and biomass retrieval. However, more research must be
conducted using X-band SAR data to examine Non-forest
woody biomass (NFWB). In radar systems, the microwaves’
wavelength determines the spatial and geometric properties
of the resulting imagery. Forests with high Above-ground
biomass (AGB) or a high stem volume are difficult to detect
as the sensitivity of the radar backscatter to biomass saturates
above a certain point [106], [107].

The level of saturation in biomass observations is influ-
enced by factors such as sensor frequency, polarization,
and angle of incidence, as well as the characteristics of
the forest itself, including type, structure, and moisture
content. Various studies have reported biomass saturation
limits ranging from 20 to 200 Mg/ha [108], [109]. Radar

FIGURE 7. The responsiveness of SAR measurements to the configuration
of hedgerows and their ability to penetrate vegetation cover at various
wavelengths employed in land surface remote sensing observations.

signals at longer wavelengths (e.g., L- or P-band) saturate
at higher biomass levels compared to shorter wavelengths
like X-band. Decreasing radar signal wavelengths leads to
improved spatial resolution, enabling the detection of smaller
targets and reducing sensitivity to changes in biomass levels.
Although much of the literature on biomass retrieval using
radar is concerned with forestry, some literature does exist
around mapping heterogeneous wooded landscapes that are
applicable. For instance, Betbeder et al. [1] utilized the SAR
data from TerraSAR-X, aerial photography, and a SPOT
5 optical image to map species distribution in France. Their
research focused on identifying hedgerows using VHSR
TerraSAR-X dual-polarization data. They processed the data
by employing Shannon entropy and backscattering analysis
to classify and extract the hedgerow network based on
single and double bounce signals. The accuracy assessment
revealed a 92% match for SPOT 5 and a 90% match for
TerraSAR-X in identifying the hedgerow network. Recent
studies suggest that the saturation phenomenon observed in
biomass measurements is not solely due to biomass levels
but is also influenced by the forest’s structure. Understanding
the forest structure may enable the extraction of additional
biomass parameters, such as stem density, beyond the
saturation thresholds previously reported [110].

1) X-BAND SAR IN HIGH VEGETATION
X-band SAR refers to a specific frequency range in the elec-
tromagnetic spectrum in radar systems. This frequency range
typically spans from 8 to 12 gigahertz (GHz). Regarding data
collection, X-band SAR systemswork similarly to other radar
technologies. They emit radio waves in the X-band frequency
range and receive the echoes reflected by objects in the
environment [97]. By analyzing these echoes, X-band radar
systems can generate detailed images and maps, providing
valuable insights into the observed area. X-band SAR’s
high resolution and accuracy are beneficial for applications
requiring fine-scale observation or detecting small objects,
such as aircraft, ships, or vegetation monitoring [111], [112].

In recent years, radar satellite data’s spatial and temporal
resolution capabilities have improved rapidly. Using extra-
high-resolution TSX-SS mode data ( 0.25 m spatial resolu-
tion) will allow for better characterization of NFWB than
previously possible with existing sensors and modes. This
will be compared with the more established imaging modes
(Spotlight and Stripmap) to determine the improvements in
using the higher-resolution data [28]. The use of VHSR radar
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to detect hedgerows and individual trees and to measure
their structure is a very recent development, but published
work has indicated its success. Betbeder et al. [1] utilized
a similar technique to examine the structure of hedgerows
using TSX-SS data and concluded that ‘‘very high spatial
resolution radar images can precisely detect the presence of
wooded hedgerow networks and characterize their structure’’.
Current literature strongly suggests that when working with
vegetative targets, coherence is unlikely to be achieved
when using radargrammetry approaches to estimate elevation
data [113].
Literature about woody vegetation/hedgerow mapping via

X-band data remains relatively limited yet progressively
expanding (with approximately 70+ publications). Some
insights can be gained from the literature on mapping
Savannah woodlands. Although quite different from typical
agriculture, these semi-arid habitats present some aspects
of NFWB mapping. One observation, demonstrated in
experiments, is that the scattering center (the apparent source
of volumetric scattering in a woodland) is lower because of
a more significant ground component, and this is increased
with the use of high-resolution X-band data [114]. This
sensitivity to ground signals could potentially account for
the superior performance of L-band data in mapping cover
and AGB in barren Savanna woodlands relative to X-band
data/methodologies [115]. One of the main obstacles faced
when mapping heterogeneous or scarcely wooded environ-
ments stems from confounding backscatter signals emanating
from landscape constituents. Such effects can be mitigated
by selecting appropriate retrieval algorithms, improving
spatial resolution, and incorporating priori data on the spatial
distribution of targets [116]. VHSR X-band backscatter
imagery has successfully mapped hedgerows within con-
ventional image classification frameworks. Betbeder and
colleagues [1] implemented an OO classification approach
using TerraSAR-X HH/VV (polarization) imagery, achieving
90–92% extraction accuracy for hedgerows.

IV. IDENTIFICATION OF HEDGEROWS IN REMOTE
SENSING IMAGERY
In remote sensing, detection refers to the process of recogniz-
ing the presence of an object in image, while identification
goes a step further by assigning labels or classifications
based on features such as spectral and spatial characteristics.
Previously, the manual identification and mapping of small
and linear woody elements were conducted through visual
interpretation of aerial photographs or traditional field-based
methods [117], [118], [119]. The reason for advancing this
method at the local level was to enhance the understanding
of hedgerow conditions through UAV surveys, enabling more
informed decisions on hedgerow habitat management and
biodiversity conservation due to their ability to cover larger
spatial areas compared to traditional ground-based surveys.
Previous research has shown that combining data from larger
areas with satellite or aerial remote sensing can evaluate
hedge connectivity at landscape scales, contributing to better

FIGURE 8. Examples of hedgerow map with the Shannon entropy index
extracted from the TerraSAR-X image [1].

comprehending the hedge network and its significance [9].
However, this approach was time-consuming and unsuitable
for extensive areas [120].

Furthermore, hedgerows were sometimes not adequately
represented in spatial databases produced by national map-
ping agencies or were not categorized appropriately. The
cartographic representation of these objects may not always
align with user requirements as green features like hedgerows
have varying applications. For example, the minimum length
required to define a linear object as a hedge may vary based
on the species being studied and its dispersal characteristics
[31]. For example, an investigation revealed an intriguing
disparity regarding the UK National Forest Inventory (NFI).
While approximately 90% of trees with canopies taller than
15 meters are documented, merely around half of those rang-
ing from 3 to 15 meters are incorporated into NFI records.
This finding underscores a concerning oversight in present
estimations of tree distribution, as it disregards smaller or less
connected tree, hedgerow, and woodland habitats (THaW)
canopies. These neglected habitats constitute a substantial
portion of overall THaW habitat coverage, landscape carbon
storage capacities, and ecological interconnectedness [121];
and so should be identified, understood, and analyzed. The
automatic extraction of hedgerows from remotely sensed
images has gained attention in recent years. Remote sensing
provides a viable solution for automatically extracting hedges
over large areas with an adequate temporal periodicity.
Hedges can be identified visually from sensors with a finer
spatial resolution, such as SPOT-5, WORLDVIEW, and
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Vision-1. This study investigated the impact of different
temporal and spatial resolutions on hedgerow monitoring.
Experiments were conducted using data at resolutions
of 20m, 10m, 5m, 2.5m, and 50cm. Findings revealed
that at 20m spatial resolution, only larger hedgerows
and riparian forests were discernible. Classification results
demonstrated that 10m resolutionwas optimal for agricultural
and hedgerow applications, enabling the detection of most
hedges, forest edges, and thickets. While a 2.5m resolution
offered increased precision and detail, it also complicated
characterization. Remarkably, the 50cm resolution emerged
as the most effective for classification purposes [122].

However, making the extraction of hedges automatic or
semi-automatic is problematic because spatially, a hedge is
a linear object similar to a road or a path, while spectrally,
they closely resemble woody vegetation like forests. Its local
contrast with the surrounding objects can also complicate
the detection and its position. For instance, city hedges are
usually located along roads or connected to house patches.
When the target is hedgerows, that literature can be broadly
split into two themes: the detection of hedgerows and
the characterization of hedgerows. This review demon-
strates that the literature is developing, and technology is
outpacing the methodologies needed to use and assess it
correctly.

A. CHARACTERIZATION OF HEDGEROWS IN REMOTE
SENSING
The two main characteristics of the hedgerows are ‘‘veg-
etation index’’ and ‘‘texture’’. The vegetation index is
a simple and effective measurement of the status of sur-
face vegetation, which can effectively reflect the vitality
of vegetation and vegetation information. It becomes a
necessary technical means for remote sensing inversion of
biophysical and biochemical parameters such as chlorophyll
content, NDVI (normalized difference vegetation index),
RVI (radar vegetation index), FVC (fractional vegetation
coverage), LAI (leaf area index), biomass, net primary pro-
ductivity, and photosynthetic effective radiation absorption
[123], [124], [125].

The reflectance spectrum of healthy green vegetation in
the visible band is characterized by significant absorption of
blue and red light, strong reflection of green light, and intense
reflection in the near-infrared band. Various vegetation
indices have been developed based on these spectral char-
acteristics to facilitate vegetation remote sensing. Common
indices include the radar vegetation index (RVI [126]), dif-
ferential vegetation index (DVI [127]), normalized difference
vegetation index (NDVI [128]), and Leaf Area Index (LAI)
[129]. These indices are crucial for assessing vegetation
health and density, comparing reflectance in the red and
near-infrared bands. The operational bands typically focus
on the visible and near-infrared spectral ranges. Obtaining
near-infrared spectrum data necessitates high-altitude remote
sensing technology. VHSR images offer high resolution,

FIGURE 9. Examples of classification map of urban vegetation types
taken from [61] and [62], respectively.

detailed texture features, and easy accessibility and contain
visible band data.

The vegetation index can accurately distinguish vege-
tation and non-vegetation. However, the vegetation index
of shrubs and herbs is similar, so the vegetation index
cannot be used to distinguish vegetation [70]. Discrimi-
nating between instances of the ‘‘same object, different
spectrum’’ and the ‘‘same spectrum, different object’’ solely
based on pixel information in images is challenging [130].
High-resolution remote sensing often yields low accuracy,
and single-scale object-oriented segmentation classification
methods are susceptible to issues like over-segmentation
and under-segmentation [131]. Researchers must rely on
their expertise to determine the optimal scale level for
object segmentation. Various geospatial techniques have been
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developed to address these challenges to enhance classifi-
cation accuracy beyond traditional spectral-based classifiers.
These techniques include utilizing textural features [132],
fractal analysis [133], spatial auto-correlation, and wavelet
transforms [134].

1) TEXTURAL FEATURES
Texture pertains to the visual impact produced by tonal
variation in small areas [135]. Textural features provide
insights into the spectral variation present in the vicinity of
a pixel or within a predetermined object. Various texture
statistics can identify unique information and spatial patterns
for features that are challenging to differentiate using spectral
information alone [136], [137]. Texture has been utilized
in several studies to differentiate between high and low
vegetation [138], [139] and identify various vegetation
types [140], [141]. Even texture derived from SAR backscat-
ter images has proven to be a simple and effective approach
that does not require additional data [142]. However, the
relative importance of texture decreases when attempting to
differentiate vegetation at more detailed levels [143]. For
instance, textural information becomes useful for vegetation
species mapping only if the spatial resolution of the imagery
is sufficiently high [144].
Textural features can be computed in two distinct manners:

either within a fixed-size window surrounding the central
pixel of the vegetation object or by solely considering
pixels that constitute the vegetation object (OBIA) [145],
[146]. The former method applies primarily to areas with
uniformly vegetated plots, rendering it less suitable for urban
settings [59]. Consequently, the object-based approach is
generally favored. However, parameterizing a segmentation
algorithm or manually delineating vegetation objects can
be laborious and may not always significantly enhance
accuracy [146].

Since the spectral characteristics of the different species of
vegetation in the urban zones are very similar and also present
large individual variability, techniques based on textures
have been developed. Textures refer to the microstructure
pattern (coarseness, contrast, directionality, line-likeness,
regularity, and roughness) that characterizes the image [147].
Numerous studies have focused on utilizing texture features
in optic, multi-spectral, or hyperspectral imagery for classi-
fying vegetation species, and texture analysis is commonly
employed in processing HR images [148], [149], [150].
Incorporating texture has been shown to enhance classifi-
cation accuracy [151]. Common methods for characterizing
vegetation using textures involve color histograms and
statistical measures (mean, standard deviation, skewness,
kurtosis, entropy, etc.) [152], [153], we present the Shannon
entropy index in Fig. 8 that are used to map hedgerows. Two
primary techniques for texture extraction based on analyzing
pixel neighborhood patterns are Local Binary Pattern (LBP)
[154] and Gray-Level Co-occurrence Matrix (GLCM) [132].
More advanced texture methods utilize local invariant

descriptors like Speeded-Up Robust Features (SURF) [155]
and Scale-Invariant Feature Transform (SIFT) [156].

A classification chain utilizing textures can be integrated
with various features derived from remote sensing satellites
to enhance classification outcomes. These features include
spectral characteristics, vegetation indices, and morpholog-
ical measurements [157], [158]. In a study by [145], different
methods for vegetation classification in multi and hyperspec-
tral images based on texture extraction and Bag of Words
(BoW) are compared. These techniques are categorized into
codebook-based, descriptor-based, and spectrally enhanced
descriptor-based approaches. CNNs can also be used to
classify vegetation exploiting textures, but they entail higher
computational complexity and longer execution times [159].

2) FRACTAL ANALYSIS
Fractals are essential in remote sensing as they provide
valuable information about the structure of objects and
surfaces. This information is crucial for object identification,
size and shape measurement, and understanding spatial
relationships [160]. In remote sensing, fractals have been
widely used to study various features such as vegetation, soil,
water, and urban areas [133], [161], [162].
Fractal analysis is instrumental in distinguishing between

different types of vegetation [163]. By measuring the fractal
dimension of leaves, which represents the complexity of
a shape, fractal analysis can differentiate between differ-
ent plant species, each plant species exhibits a distinct
fractal dimension, enabling accurate identification and
classification [101].
There are several methods available for calculating fractal

properties, each with advantages and limitations. These
methods include the correlation dimension, fourier transfor
lacunarity, multifractal analysis, Isarithm, Triangular Prism,
and Variogram [164], [165], [166], [167]. The choice
of method depends on the specific application and data
being analyzed. For example, the box-counting method is
commonly used for calculating the fractal dimension, while
the power spectrum method analyzes the spatial frequency
of fractal patterns. Lacunarity measures the gappiness or
heterogeneity of a fractal pattern, while multifractal analysis
provides a more comprehensive characterization of the
spatial distribution of fractal objects. These methods can
be compared with existing methods such as morphological
profiles [168] and gray level Co-occurrence matrix (texture
features [132]).

To describe vegetation using fractals, researchers utilized
various metrics such as fractal dimension, lacunarity, and
spatial frequency [169], [170]. Fractal dimension quanti-
fies the complexity of patterns, lacunarity measures the
homogeneity of patterns, and spatial frequency captures
the variability of an image at different scales. However,
recently, by incorporating these fractal properties into deep
learning classification algorithms, it is possible to improve
the accuracy of species mapping in remote sensing; in
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this context, fractal convolution can be seen as a specific
technique within the broader field of fractal analysis [171].

In complex environments such as urban areas, distin-
guishing between plant species based on their spectral
characteristics can be challenging due to the high level of
spectral heterogeneity. Fractal analysis offers a solution to
this challenge by focusing on the structural properties of
objects, which are less influenced by spectral variations
[172]. This approach provides valuable information that can
enhance the accuracy of the classification and interpretation
of remote sensing data in such complex settings.

3) SPATIAL AUTO-CORRELATION AND WAVELET
TRANSFORMS
Spatial auto-correlation measures the similarity between
observations in spatial data [173]. For example, spatial
auto-correlation exists when the value of a variable (like
a hedge) at a location is correlated with the values of the
same variable at neighboring locations due to the underlying
spatial processes. There are different methods to quantify
spatial auto-correlation. Moran’s I calculates the correlation
of variates at locations with their average neighbors’ values.
Geary’s C compares the variate of each location with
the variate of neighboring locations, Getis-Ord General G
measures the concentration of high or low values in a spatial
dataset; researchers use these indices to identify spatial
clustering and ensure diversity [174].
Wavelet transforms provide an alternative approach to

analyze spatial auto-correlation structures [175]. They allow
the decomposition of a spatial dataset into components at
different scale levels by convolving the original data with
wavelet basis functions. Common wavelet transforms used
in spatial data analysis include the Haar, Daubechies, and
Morlet wavelets [176]. One can detect spatial patterns and
anomalies present at specific scale levels by examining
the wavelet coefficients. For example, wavelet transforms
have been applied to detect anomalies in spatial datasets
by identifying locations where high variance exists only at
fine scales [176]. They have also been used with spatial
auto-correlation indices to perform multi-scale geostatistical
modeling and kriging of non-stationary spatial processes
[177]. Wavelet-based methods are particularly useful for ana-
lyzing geographic datasets with heterogeneous multi-scale
spatial correlations [178].

In recent years, there has been a growing focus on multi-
scale analysis, leading to the development of numerous
methods aimed at investigating the impacts of varying
spatial scales [179]. Discrete Wavelet Transform (DWT)
is an advanced mathematical method to provide scale and
location information for spatial variation [180]. Geographi-
cally Weighted Regression (GWR) unveils spatially varying
relationships between dependent and explanatory vari-
ables, effectively addressing non-stationarity concerns [181].
Researchers have successfully applied GWR to discern the
primary influences on NDVI across different scales [174].

FIGURE 10. An instance of the shadow being used as an incorrect
classification in a land-use study [185].

NDVI and topography exhibit scale dependencies, with
terrain attributes affecting NDVI differently across distinct
research areas [182]. Cross-wavelet analysis is a powerful
tool for exploring correlations between two related time series
through cross-spectral and wavelet analyses [183], enabling a
comprehensive examination of their relationship in the time-
frequency domain. Wavelet transforms (WT) are particularly
suitable for detailed image analysis, serving as a potent
tool for enhancing image details akin to a mathematical
magnifier. This extraction capability of wavelet transforms
proves valuable in addressing challenges encountered by
CNNs, as they can efficiently capture intricate features by
adjusting translations and scales. Integrating WT with CNNs
allows for the acquisition of rich features. Recent studies
have demonstrated the effective integration ofWavelet Neural
Networks with diverse interdisciplinary algorithms like fuzzy
logic, fractal analysis, and genetic algorithms [176], leading
to notable advancements across various applications, notably
in vegetation studies [184].

B. DETECTING HEDGEROWS USING AI TECHNIQUES IN
REMOTE SENSING IMAGERY
The detection of hedgerows has evolved significantly with
advancements in AI techniques applied to remote sensing
imagery. Traditionally, hedgerow mapping relied on field
surveys, manual digitization from aerial photography, and
ground-based observations [186], [187]. For example, Back
in 2008, it was reported in [188] that no accurate mapping
of hedgerows existed at the landscape scale in the land
cover maps of the UKCEH. Mapping every hedgerow across
hundreds of 2 km by 2 km landscape sites would have been
time-consuming and labor-intensive. At the time, they used
digitization from aerial photography as the quickest method
available. These methods, while accurate in small-scale
or local studies, are labor-intensive, time-consuming, and
prone to human error, particularly over large geographic
areas. Traditional approaches like boundary maps, DTM,
and DSM have been used for national-scale assessments
of hedgerows [189], [190]. However, these techniques
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TABLE 1. VHSR Satellites with < 1 m resolution.

lack the precision and efficiency offered by modern
AI-powered approaches. The advent of AI techniques,
starting with algorithms like Random Forest [185], and
progressing to deep learning models, has facilitated auto-
mated and highly accurate hedgerow detection, thereby
transforming the applications of remote sensing.

The accurate detection of hedges through satellite imagery
is an intricate task in the field of remote sensing. While
hedges may appear similar to forests from a spectral
standpoint [28], as discussed, they are linear in nature
and can be compared to roads or dirt tracks in terms of
spatial perspective. Furthermore, their placement along roads
or at right angles to forest edges adds another layer of
complexity to their detection. Cutting-edge VHSR remote
sensors can capture images that provide both spectral and
spatial information, making it possible to automatically
detect hedges. There is a growing literature on using
optical imagery, whether obtained from satellites, aircraft,
or drones, to map the extent of hedgerows [191], [192]. The
principal method applied is object-oriented segmentation.
In segmentation, groups of contiguous pixels with similar
properties are clumped together to create objects. These
objects are then classified as a whole rather than being
individually analyzed.

The authors in [193] utilized an object-oriented method
to automatically identify and detect hedgerow networks in
France using a combination of VHSR optical satellites,
SPOT 5 and KOMPSAT. The segmentation process involved
three hierarchical levels (tree, hedge, and field), and fuzzy
logic was used for image classification. The results showed
that SPOT 5 images were slightly more accurate than
other classifications, with a detection accuracy of 84.5%
for small wooded elements and 97% using Kompsat and
SPOT 5 images, respectively. This study concluded that
the object-oriented approach applied to satellite images
with a VHSR of 1 m is a reliable and efficient method
for detecting small wooded elements and characterizing
hedgerows. To provide readers with specific information
about VHSR satellites, we have included Table 1 in this
article. This table serves as a valuable addition, allowing
researchers, professionals, and enthusiasts interested in
satellite imagery and remote sensing to easily identify
and compare the capabilities of different VHSR satellites.
The table includes details such as the satellite’s name,
spatial resolution, type of sensor, launch time, and operator.
It covers various VHSR satellites from various operators
and launch times. The satellites listed in the table include
those equipped with panchromatic sensors and those utilizing
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multispectral and X-band SAR technologies. The spatial
resolutions of these satellites range from 0.25-1 meters,
providing a comprehensive overview of the available options
for high-resolution satellite imagery.

In the UK, a national map of hedgerows was established
using national-scale boundary maps, including a DTM and
a DSM [190]. The length and height of hedgerows can be
estimated by calculating the difference between the DTM and
DSM at the boundaries. The study utilized NEXTMap DSM
and DTM data with 5 m resolution. In Ireland, national DSM
and DTM products with resolutions of 1 meter and 2 meters,
respectively, are available from Bluesky2. The model’s
effectiveness was evaluated by comparing it to woody linear
feature data from countryside surveys at different scales.
Despite some limitations, this simple approach can provide
helpful information about the extent and locations of woody
linear features in both local and national contexts [28].

Aksoy et al. [30] utilized a multi-feature and multi-
scale approach with a shape-based target detection algorithm
to distinguish hedgerow pixels. They extracted hedgerow
networks in six locations across three European countries by
analyzing spectral and texture data from Quick Bird imagery.
The researchers found that their model was successful and
could be adapted for detecting natural boundaries of linear
objects, including roads, rivers, and paths.

Fauvel et al. [31] utilized a support vector machine (SVM)
analysis to detect hedgerows in VHR Worldview-2 images.
By incorporating feature orientation, the NDVI, and texture
analysis, they could accurately discriminate hedges from
other woody elements, such as forests. The results showed
that the local orientation was defined as the difference
between the morphological directional profile’s minimum
and maximum. However, there were some false detections
of non-woody elements with significant local orientation
in the final results. Fauvel et al. [31] utilized a SVM
analysis to detect hedgerows in VHR Worldview-2 images.
By incorporating feature orientation, the NDVI, and texture
analysis, they could accurately discriminate hedges from
other woody elements, such as forests. The results showed
that the local orientation was defined as the difference
between the morphological directional profile’s minimum
and maximum. However, there were some false detections of
non-woody elements with significant local orientation in the
final results.

Burnett and Blaschke [194] applied multi-scale segmen-
tation object relationship modeling and segmentation of
color orthophotography to identify linear objects in the
landscape. To tackle challenges related to heterogeneity,
scale, connectivity, and quasi-equilibrium states in land-
scapes, they proposed a five-step framework employing the
hierarchical patch dynamics (HPD) technique. This multi-
scale segmentation/object relationship approach predomi-
nates linear feature extraction strategies. Hedgerow maps
are pivotal in vast-scale ecosystem services investigations
and automated techniques for delineating regions of high

natural worth [195]. A study by Sheeren et al. [196] utilized a
hybrid approach, incorporating aerial photography alongside
ancillary coarse-resolution datasets, to distinguish minute
wooded elements systematically. Firstly, the extraction of
wooden elements was accomplished via textural analysis,
which proved efficient in isolating wooded elements from
orthophotos without confounding them with other classes
sharing comparable pixel values (such as grasslands and crop
fields). In contrast to the traditional per-pixel classification
approach, the hybrid method allows for incorporating spatial
and relational features in the classification process.

Tansey et al. [40] also used object-oriented classification
of VHR airborne imagery in the UK to extract hedgerows.
Despite successes, some criteria for defining hedgerows
remained elusive. Object/segmentation approaches were
consolidated in a study by O’Connell et al. [185], where
a rural region of the UK was mapped with high-resolution
airborne data, processed, segmented, and classified through
a Random Forest model. Generally, the performance was
good for all selected classes, with hedgerow achieving 77%
production accuracy. Nonetheless, the paper’s credibility is
diminished by incorporating shadow as a land cover class.
Though shadows are indeed present and extracted in the
segmentation process, they are not actual land covers/uses.

Consequently, pixels labeled as shadows are erroneously
classified for land-use studies, as shown in Fig. 10, many
shadows are linked to hedgerows. As a consequence, the
true user accuracy for the hedgerow class is probably far
lower than reported. Ultimately, the outcomes from these
studies indicate that the declared precisions must be handled
cautiously and that the methods typically recognize parts of
hedgerows rather than entire ones. Therefore, an automated
and cost-effective approach would be preferred for regional
monitoring of hedgerows. Automated hedgerow mapping
from aerial or satellite imagery has focused on random forest
or support vector machine methods using object-based image
analysis (OBIA) [30], [31], [40], [185], [193], [197]. OBIA
allows for incorporating object features such as size, shape,
or context regarding neighboring objects. Although increased
inclusion of features has been shown to improve hedgerow
detection [30], [31], [185], [197], the lack of transferability
of features across study sites limits the capacity of OBIA
approaches [30], [193], [197]. This lack of transferability
means that the features that worked well in one study site
do not perform as effectively in another site. The reasons
behind this could be variations in environmental conditions,
different tree species compositions, or other factors specific
to each location. As a result, the OBIA-approach’s capacity
to accurately classify and map the hedges in different study
sites is limited.

Furthermore, manually designed features may be over-
specified, incomplete, and time-consuming in design and
validation [198]. Using manually engineered features is
thus one of the main drawbacks of an OBIA approach for
hedgerow mapping [30], [193], [197], [198]. To facilitate
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non-experts’ ability in feature engineering and remote sens-
ing to perform automated hedgerow mapping, the overhead
of feature engineering must be reduced.

1) HEDGEROW DETECTION WITH DEEP LEARNING
In order to accurately map vegetation, manual labeling of
training samples is often required to provide ground truth or
masks. However, some studies utilize existing datasets like
small woody features (SWF) [199], [200], [201] obtained
from the Copernicus Land Monitoring Services.1 The SWF
dataset includes a raster layer with a spatial resolution of
5m/pixel and a vector layer that classifieswoody features into
linear, patchy, and additional features. Additional features
refer to those that do not fall into the linear or patchy
categories but contribute to the connectivity of other features
or represent isolated features with an area larger than
1500 m2. The latter are features that are, according to the
rules, neither linear nor patchy but enhance the connectivity
of other features or represent isolated features with an area
larger than 1500 m2.

In recent years, deep learning (DL) models, particularly
deep neural networks, have significantly improved semantic
image segmentation compared to previous methods. Many
DL-based approaches for semantic image segmentation
utilize end-to-end CNNs, such as the fully convolutional
network (FCN) [202], to classify individual pixels into
predefined semantic classes. These models typically consist
of an encoder-decoder architecture [203], [204], [205],
where the encoder compresses the input image into a latent
representation using a backbone feature extractor often a
pre-trained CNN on a large dataset such as ImageNet [206].
The decoder reconstructs from the latent representation
a segmented image of original size through a series of
up-sampling operations and a final pixel-wise classifica-
tion Encoder-decoder architectures have been successfully
employed for vegetation mapping using both UAV [207],
[208] and VHR imagery [209]. Further improvements have
been made by incorporating dilated separable convolutions
[210] and channel attention mechanisms [211]. Currently,
DeepLab v3+ (for semantic segmentation) [210], [212],
[213] and Mask R-CNN (for instance segmentation) [214],
[215] are state-of-the-art models for their respective tasks and
are openly available through public repositories as shown in
in Fig 11.
When applying pre-trained networks to remote sensing

data, there are restrictions on the input data, as pre-
trained networks are typically trained on three-band images.
Additionally, limited training data in remote sensing can lead
to network overfitting, which can be mitigated through data
augmentation techniques. A common technique used to offset
small dataset sizes is data augmentation. Here, the original
images are modified (e.g., rotated and scaled) in order to
increase the size of the dataset [159] and avoid overfitting

1https://land.copernicus.eu/pan-european/high-resolution-layers/small-
woody-features

FIGURE 11. Example of the architecture of CNNs.

FIGURE 12. Map showing hedgerows detected with a CNNs algorithm at
a landscape scale [68].

[216]. However, choosing the appropriate data augmentation
strategy depends on the dataset and prediction targets, as an
improper choice can negatively impact network predictions
[217], [218]. While FCN and R-CNN architectures have been
successfully applied to vegetation classification [219], [220],
this presents an opportunity as these specific applications for
hedgerow detection have not been extensively explored.

Nonetheless, studies have demonstrated the effectiveness
of alternative FCN and R-CNN architectures for vegetation
classification, and Mask R-CNN has shown superior perfor-
mance compared to FCN in tree canopy segmentation tasks
[221], with the downside being that Mask R-CNN required
longer training time.While both networks have demonstrated
exceptional accuracies on classification datasets like COCO
(Microsoft Common Objects in Context) [222], this remark-
able performance does not consistently transfer when these
networks are utilized on novel datasets [221]. One contribut-
ing factor is linked to the accuracy of annotations employed
during network training, as the precision of annotations has
been revealed to impact network performance [223]. Creating
the COCO dataset included multiple quality checks to
ensure precise object annotations [222]. However, monitoring
agencies often lack the resources to invest in precise dataset
annotations, resulting in poorly annotated datasets from
which the network must learn.
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TABLE 2. Strengths and weaknesses of sensors.

TABLE 3. Strengths and weaknesses of techniques.

In 2021, Ahlswede et al. [68] explored the applicabil-
ity of high-performance DL networks for remote sensing
object detection using real-world datasets. Considering
the challenges faced in implementing OBIA approaches
and their poor performance across different study areas,
this work aims to systematically evaluate the potential
of pre-trained neural networks for accurate and precise
hedgerow detection. The study compares the performance of
Mask R-CNN and DeepLab v3+ networks. It investigates
optimal data inputs for fine-tuning the networks, including
the optimal three-band combination, seasonal imagery, and
data augmentation strategies. The study demonstrates the
scalability of neural networks for hedgerow detection using
IKONOS 1-m data. This presents another opportunity to
use DL methods in this context, which is still novel and
relatively unexplored in hedgerow mapping from satel-
lite imagery. There have been notable advancements in
aerial and satellite image segmentation in recent years.
These advancements include applying transfer learning
from high-resolution satellite datasets [198], which allows
leveraging pre-existing knowledge to improve segmentation
accuracy. Another approach involves using ensembles of
segmentation neural networks [224] to enhance the overall
performance by combiningmultiple models. Hybrid architec-
tures [4], [225], have also been explored, combining different
neural network components to benefit from their respective
strengths.

To address the classification challenges associated with
easily confused classes, adaptive CNNs have been devel-
oped [226]. These adaptive CNNs alter their classification
strategies based on the specific characteristics of the classes,
leading to improved accuracy. Deformable convolutions
[227], [228] have also been introduced to adjust the
receptive field of the network to accommodate geometric
deformations in shape and size, allowing for more precise

segmentation. In addition to these techniques, graph neural
networks (GNN) have emerged as an alternative approach for
image segmentation in remote sensing [229], [230], [231].
GNNs operate on graph nodes constructed from an image
in a preprocessing step, enabling them to capture spatial
relationships and dependencies between image elements.
This approach has shown promising results in remote
sensing image segmentation tasks [62]. Specifically, graph
convolutional networks (GCNs) are a type of GNN that
can process graph-structured data directly. In remote sensing
image segmentation, a graph representation is constructed
by treating each pixel as a node and connecting adjacent
pixels through edges. By utilizing GCNs, information can
be propagated through the graph, enabling the capture of
spatial dependencies and ultimately enhancing the accuracy
of segmentation [232], [233].
Attention-based transformers have also gained attention,

either replacing or supplementing the backbone CNN
in segmentation architectures [234], [235], [236], [237].
Attention-based transformers are inspired by the Transformer
model, which has been highly successful in natural language
processing tasks. These transformers excel at capturing
long-range dependencies in images and improving the
modeling of complex spatial relationships. By leveraging
self-attention mechanisms, they can assign different weights
to different image elements, allowing them to focus on essen-
tial regions and effectively process contextual information
[238]. When applied to remote sensing image segmentation,
attention-based transformers have demonstrated the ability
to enhance the accuracy of segmentations by effectively
capturing global spatial dependencies and incorporating them
into the segmentation process [239], [240]. This newer
approach shows promise in overcoming some limitations
of traditional CNN-based segmentation methods in remote
sensing applications.
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These recent advancements demonstrate the ongoing
efforts to enhance aerial and satellite image segmentation
techniques. By incorporating transfer learning, ensem-
ble methods, adaptive CNNs, deformable convolutions,
graph neural networks, and attention-based transformers,
researchers are pushing the boundaries of segmentation
accuracy and paving the way for improved remote sensing
applications.

V. CONCLUSION
A. WEAKNESSES AND CHALLENGES IN HEDGEROW
MAPPING
The hedgerow mapping field faces several weaknesses and
opportunities, as we have shown in this review particularly
in OBIA, deep learning, and texture analysis. Despite the
existing challenges, we have compared the weaknesses and
strengths of remote sensing sensors and existing methods in
Table 2 and Table 3. One significant challenge in hedge detec-
tion is the absence of a standardized reference dataset. This
gap hampers the evaluation and comparison of algorithms,
making it difficult to assess the performance of various
methods and establish consistent standards. As observed
in the literature review, the lack of a standard benchmark
impedes the seamless comparison of results across different
approaches. To address this issue, there is a pressing need to
develop a comprehensive and publicly accessible reference
dataset specifically tailored for hedgerow detection. Such a
dataset would enhance the comparability of research findings,
foster collaboration, and accelerate progress in the field.

As noted in the review, traditional field-based methods
for detecting and characterizing hedgerows are often time-
consuming, subjective, and prone to human error. This
limitation highlights the need for more automated and
objective techniques. Machine learning approaches, OBIA
and texture analysis, offer potential solutions, but they also
come with their own challenges.

For instance, the review highlights that in OBIA, relying on
manually engineered features can be a bottleneck. Develop-
ing feature sets that are robust, generalizable, and transferable
across different study sites is a complex task. It requires
expert knowledge in feature engineering and remote sensing
and considerable time and resources. Overcoming this
challenge would make the OBIA approach more efficient,
automated, and cost-effective.

Similarly, the review shows us that DL methods, on the
other hand, offer promising avenues for hedgerow Mapping.
However, their application in this field is still relatively
limited. DL models require large amounts of labeled data
for training, which can be scarce or unavailable for specific
study areas. Additionally, the complexity of deep learning
architectures and the need for computational resources pose
challenges for their practical implementation.

Texture analysis, another technique widely used in remote
sensing, is also limited. While it can capture fine-grained
details and patterns in images, accurately identifying and

characterizing hedgerows solely based on texture features can
be challenging. Vegetation density, species composition, and
management practices can introduce variations that affect the
reliability and accuracy of texture-based analysis.

Addressing these weaknesses and challenges in hedgerow
mapping requires ongoing research and development efforts.
It involves the creation of standardized reference datasets,
the exploration of more automated and robust feature sets,
the refinement and adaptation of DL models, and the
integration of complementary techniques alongwith selecting
the required remote sensing sensor. By overcoming these
challenges, researchers can enhance hedgerow mapping
methods’ accuracy, efficiency, and reliability, supporting
better understanding and management of these important
ecological features.

B. FUTURE DIRECTIONS AND POTENTIAL
DEVELOPMENTS IN HEDGEROW MAPPING
Developing standardized mapping protocols for detecting
hedgerows is essential to guarantee uniformity and compa-
rability among various research endeavors. These guidelines
should cover crucial elements like hedgerow definition,
data collection techniques, and accuracy evaluation method-
ologies. Standardization enables dependable comparisons
and meta-analyses of hedgerow investigations. The field
of hedgerow detection is continuously evolving, driven by
advancements in remote sensing technologies and compu-
tational methods in machine learning and computer vision.
As researchers strive to overcome the challenges associated
with accurately detecting and characterizing hedgerows in
complex environments, several future directions and potential
developments emerge:

1) Integration of multi-source data: A promising direction
is the integration of diverse data sources, such as
satellite imagery, aerial photography, LiDAR data,
and ground-based measurements, which we showed in
Section III. By combining data from various sources,
researchers can leverage the complementary strengths
of each data type, leading to improved accuracy
and reliability in hedgerow detection. This integration
can help overcome the limitations of individual data
sources and provide amore comprehensive understand-
ing of hedgerow characteristics.

2) Fusion of VHR optical and SAR data: The fusion of
optical and radar data presents an exciting opportunity
for hedgerow detection. Optical data can provide
detailed information about spectral properties and
vegetation structure, while radar data can penetrate
through vegetation, offering insights into hedgerows’
vertical structure and biomass. Integrating these data
modalities can lead to a more comprehensive under-
standing of hedgerow characteristics. This integrated
approach can improve the accuracy and reliability of
hedgerow detection algorithms by capturing a wider
range of features and characteristics associated with
hedgerows.
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3) Texture analysis with SAR data: SAR data offers
unique capabilities for hedgerow detection due to its
sensitivity to surface roughness and backscatter prop-
erties. Texture analysis techniques, such as gray-level
co-occurrencematrix (GLCM) andwavelet transforms,
can be applied to SAR imagery to extract textural
information related to hedgerow characteristics. These
textural features can complement other data sources
and improve discrimination between hedgerows and
surrounding land cover types. Incorporating texture
analysis with SAR data can enhance the accuracy
and robustness of hedgerow detection algorithms in
diverse environmental conditions. For instance, Luo
and Mountrakis [241] demonstrated that using texture
information from Landsat imagery increased the clas-
sification accuracy by at least 3.6%.

4) Advanced machine learning techniques: The appli-
cation of advanced machine learning techniques,
particularly deep learning algorithms such as CNNs
and Mask R-CNN, hold great potential for enhancing
hedgerow detection. These algorithms can effectively
extract complex features and patterns from remote
sensing data, enabling more accurate identification and
characterization of hedgerows. In our detailed discus-
sion of deep learning in Section IV, we explored how
these models improve the reliability and automation of
detection algorithms, resulting in enhanced precision
and detailed analysis. Additionally, image captioning
techniques can further enhance this process by gener-
ating detailed descriptions of hedgerow characteristics
such as describe of height, length and etc, supporting
automated monitoring and urban planning efforts.

5) Automated image captioning: Image captioning tech-
niques, combining computer vision and natural lan-
guage processing, can provide detailed descriptions
of hedgerows based on remote sensing images.
By automatically generating textual descriptions, these
techniques can assist in data interpretation, enabling
efficient analysis and decision-making in land man-
agement and conservation efforts [242]. This approach
can make the results more accessible and facilitate
communication between researchers, land managers,
and policymakers.

6) Long-term monitoring and change detection: Temporal
monitoring and change detection of hedgerows are
essential for assessing their dynamics and evaluating
the effectiveness of conservation measures. Integrating
time-series data and developing automated algorithms
for change detection can provide valuable insights into
hedgerow dynamics and support adaptive management
strategies.

7) Citizen science and crowd-sourcing: Engaging citizen
scientists and leveraging crowd-sourcing platforms can
significantly contribute to hedgerow detection efforts.
Involving the public in data collection and validation
processes allows for the collection of large-scale and

geographically diverse datasets, fostering collaborative
research and enhancing the accuracy of hedgerow
mapping like: ‘‘TreeSnap’’ an APP developed by The
University of Tennessee Forest Resources Research &
Education Center that allows users to photograph and
map trees, contributing to a comprehensive database for
tree identification and monitoring [243]. ‘‘iNaturalist’’,
a platform where users can upload photos of trees and
other organisms, which are then verified by experts
and added to a global biodiversity database [244].
‘‘Treezilla’’ is a citizen science project in the UK
that aims to map and measure urban trees using
crowd-sourced data to better understand the benefits of
urban forests [245].

The review of remote sensing technologies for hedgerow
monitoring highlights the importance of accurately detecting
and characterizing hedgerows, especially in urban envi-
ronments. Hedgerows play a vital role in maintaining
biodiversity and ecological balance in urban environments
where they are importance in providing food resources,
habitats, and movement corridors for wildlife, as well as
their role in connecting landscapes and contributing to halting
biodiversity decline and addressing climate change.

This review underscores the advantages of using remote
sensing in detecting hedgerows, including monitoring large
areas and providing valuable data for conservation and
management purposes.

Overall, the review highlights the importance of preserving
and conserving hedgerows, which is paramount to advancing
global aspirations such as sustainability objectives and the
United Nations Sustainable Development Goals. It also
emphasizes the need to enforce and monitor regional,
national, and international regulations to prevent the ongoing
loss of biodiversity and the services and natural capital
supported by biodiversity.

However, we note that hedgerows can vary significantly
in structure at both the tree and hedgerow scales, depending
on the landscape, making it challenging to detect and
characterize them using remote sensing. As a result, we have
identified the need for standardized terminology and criteria
for defining hedgerows, which would facilitate comparing
and integrating the results from different studies.

The review highlights that remote sensing technolo-
gies, combined with deep learning algorithms and image
captioning techniques, offer promising hedgerow detection
and monitoring solutions. However, the complexities of
urban landscapes and their unique challenges for automatic
hedgerow detection must be addressed.

In conclusion, future directions and potential developments
in hedgerow detection involve integrating multi-source data,
advanced machine learning techniques, optical and radar
data fusion, automated image captioning, standardized map-
ping protocols, long-term monitoring and change detection,
citizen science, and crowd-sourcing. By exploring these
avenues, researchers can advance the field and improve our
understanding of the ecological importance of hedgerows,
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supporting sustainable land management practices and bio-
diversity conservation.
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