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Abstract: Alpine treelines serve as vital indicators of the impacts of climate change on tree
growth and forest distribution. They offer valuable insights into how shifting
temperature and precipitation patterns affect ecosystems in treeline ecotones.
Analyzing the age structure of tree stands at treelines provides a glimpse into how
different generations of trees have responded to changing environmental conditions
and aids in predicting future changes. Moreover, studying the spatiotemporal
distribution of tree species at treelines helps us gain a comprehensive understanding
of how forests adapt to climate variations. Tree rings at treelines can elucidate the
climatic factors that limit tree growth and establishment patterns. Mountain
environments, characterized by low temperatures at higher elevations, create
constraints on tree growth. However, the intricate interplay between temperature and
water availability, driven by precipitation gradients, means that predicting treeline shifts
based solely on temperature changes is overly simplistic and may not fully reflect the
complex reality. To assess the potential for such interactions, we contrasted the
dendroecological performance of different tree species (Abies spectabilis, Betula utilis,
Abies georgei and Larix potaninii) in the trans-Himalayan zone, Nepal and Hengduan
Mountains, China. We reconstructed the stand age structure by using
dendrochronology. Statistical determination of climate-growth responses demonstrated
that treeline is moisture sensitive in Himalaya, and temperature as well as moisture
sensitive in Hengduan region. There was abundant seedling recruitment with
consistent range shift of A. spectabilis and B. utilis treelines in Nepal, and lower
seedling recruitment with lower shifting rates of treelines of A. georgei and L. potaninii
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in Hengduan Mountains. We identify both moisture and temperature as critical
environmental factors in determining tree radial growth and treeline response to
climate. However, modifying factors such as microhabitat conditions and biotic
interactions are also highly important to improve accuracy of treeline dynamics.
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Abstract 14 

Alpine treelines serve as vital indicators of the impacts of climate change on tree growth and 15 

forest distribution. They offer valuable insights into how shifting temperature and precipitation 16 

patterns affect ecosystems in treeline ecotones. Analyzing the age structure of tree stands at 17 

treelines provides a glimpse into how different generations of trees have responded to changing 18 

environmental conditions and aids in predicting future changes. Moreover, studying the 19 

spatiotemporal distribution of tree species at treelines helps us gain a comprehensive 20 

understanding of how forests adapt to climate variations. Tree rings at treelines can elucidate the 21 

climatic factors that limit tree growth and establishment patterns. Mountain environments, 22 

characterized by low temperatures at higher elevations, create constraints on tree growth. 23 

However, the intricate interplay between temperature and water availability, driven by 24 

precipitation gradients, means that predicting treeline shifts based solely on temperature changes 25 

is overly simplistic and may not fully reflect the complex reality. To assess the potential for such 26 

interactions, we contrasted the dendroecological performance of different tree species (Abies 27 

spectabilis, Betula utilis, Abies georgei and Larix potaninii) in the trans-Himalayan zone, Nepal 28 
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and Hengduan Mountains, China. We reconstructed the stand age structure by using 29 

dendrochronology. Statistical determination of climate-growth responses demonstrated that 30 

treeline is moisture sensitive in Himalaya, and temperature as well as moisture sensitive in 31 

Hengduan region. There was abundant seedling recruitment with consistent range shift of A. 32 

spectabilis and B. utilis treelines in Nepal, and lower seedling recruitment with lower shifting 33 

rates of treelines of A. georgei and L. potaninii in Hengduan Mountains. We identify both 34 

moisture and temperature as critical environmental factors in determining tree radial growth and 35 

treeline response to climate. However, modifying factors such as microhabitat conditions and 36 

biotic interactions are also highly important to improve accuracy of treeline dynamics.   37 

Key words: Trans-Himalaya; Hengduan Mountain; treeline; timberline; ecotone; range shift; 38 

limiting factor; regeneration 39 

Total word count: 9594 (including figures and tables) 40 

1 Introduction 41 

Alpine treelines are the conspicuous transition zone between timberline and treeless alpine 42 

vegetation (Körner 2003). Near-natural treelines are typically climate-limited and thus valuable 43 

indicators of changing climate (Kullman 2002; Körner and Paulsen 2004; Batllori and Gutiérrez 44 

2008). Alpine treelines have been reported to be shifting upwards in response to global warming 45 

(Grace et al. 2002; Holtmeier & Broll 2007; Harsch et al. 2009; Hansson et al. 2020). The 46 

formation of the upper distributional limit of the tree life form according to thermal balance 47 

(Körner 1998, 2003, 2012; Holtmeir & Broll 2007; Harsch et al. 2009) emphasises that climate 48 

warming is expected to promote forest growth at their elevation range edge, to generate 49 

densification of ecotone and to advance treelines upward in the elevation (Grace et al. 2002; 50 

Dullinger et al. 2004; Smith et al. 2009). However, for comparatively dry and semiarid zones, 51 

treeline position is frequently limited by drought stress (Lloyd and Fastie 2002; Wilmking et al. 52 

2004; Qi et al. 2015; Tiwari et al. 2017a). In such regions, current warming may exacerbate 53 
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moisture stress and even may cause retreat of treelines downslope. For the Himalayan region, 54 

evidence suggests treeline shift rates are driven by moisture availability during the dry season 55 

(Tiwari et al. 2017a; Sigdel et al. 2018). Great uncertainties still prevail at explaining treeline 56 

response to rapidly changing climate because treelines do not always keep pace with climatic 57 

change on multi-decadal time scales, as the displacement and adjustment of alpine trees to 58 

warmer climate can require decades or even centuries (Kullman 2007).  59 

Tree encroachment into grass and shrub-dominated high-altitude ecosystems is pervasive 60 

under warming climate (Formica et al. 2014; Huss et al. 2017; Mainali et al. 2020). In alpine 61 

regions, woody plant expansion through densification and infilling of canopy gaps and 62 

advancement of treelines has been widely observed under warming climate (Myers-Smith et al. 63 

2011; Liang et al. 2011b; Gaire et al. 2014; Camarero et al. 2017). Forest densification within the 64 

treeline ecotone can be more responsive to climate change than treeline shifting, due to biotic 65 

interactions providing a more benign environment for tree recruitment when sheltered by 66 

conspecifics than in open areas above the treeline (Liang et al. 2016; Morley at al. 2020). Hence, 67 

treeline shift is a consequence of shifts in vegetation zone associated with abundant tree 68 

establishment at the upper edge of the treeline ecotone (Greenwood et al. 2014). 69 

The elevational treeline environment is very heterogeneous, which limits broad 70 

generalization on treeline sensitivity to climate because of topographic variation (Daniels and 71 

Veblen 2004; Elliott and Kipfmueller 2011; Greenwood et al. 2014) and also because of intense 72 

human activities mainly related to declined land use intensity (Schickhoff et al. 2015). Seedling 73 

recruitment, stand densification and rate of upward shifting of the treeline can greatly vary 74 

between surface gradients (slope) and orientation (aspects) due to substantial difference in soil 75 

conditions and intensity of solar radiation (Danby and Hik 2007; Matzinger et al. 2003), and due 76 
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to other factors such as stand history, dispersal ability of tree species, disturbance and ecological 77 

interactions (Schloss et al. 2012).  78 

Various studies have reported upward shifts of the Abies spectabilis treeline, both in 79 

temperature sensitive (Gaire et al. 2014, Mainali et al. 2014) and moisture sensitive (Tiwari et al. 80 

2017a) ecotones in the Himalaya, although there are some evidences for stable position during 81 

the past century (Sigdel et al. 2018). Although there are climatic as well as non-climatic factors 82 

involved in determining treeline dynamics, shifting treelines have been reported from Hengduan 83 

Mountains (20 m in elevation in the past 100 years) (Liang et al. 2016), in northwestern Yunnan, 84 

(Moseley 2006; Baker and Moseley 2007), and in Baima snow mountain in the central part of 85 

Hengduan Mountain in China (Wang et al. 2019a).  86 

The Himalaya and Hengduan Mountain regions are rapidly warming regions of the 87 

northern hemisphere. Trends in much of the Himalayan region substantially exceed the global 88 

average trend of warming (IPCC 2013), with the decreasing number of cold days and nights and 89 

increasing number of warmer days and nights making most ecosystems vulnerable to climate 90 

change (Shrestha et al. 2012; Sharma and Tsering 2009; Aryal et al. 2012). Moreover, the Hindu 91 

Kush Himalayan (HKH) region showed the annual mean warming rates of 0.19 °C/decade during 92 

the period 1901–2014, while that of 1951–2014 period was 0.20 °C/decade (Ren et al. 2017), and 93 

the substantial increase in length of growing season (Krishnan et al. 2019). Observed trends in 94 

Hengduan Mountain show increasing temperature of the warmest and coldest nights by 0.016 95 

ºC/yr and 0.055 ºC/yr respectively, a decrease in the number of frost and ice days, and an 96 

increase in the length of the growing season during the past half-century (Ning et al. 2012). 97 

However, the widespread increase of air temperature and variation in precipitation trends 98 

associated with strong topographic gradients and rain shadow effects are largely responsible for 99 
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the complex climate system in both Himalayas (Schickhoff 2005) and Hengduan mountains 100 

(Ning et al. 2012) raising significant questions about how treelines of the region might respond 101 

to climate change. 102 

In this study we wanted to test if the climatic factors only modulate the treeline dynamics 103 

or if there are other driving factors such as land use changes including grazing pressure, fire and 104 

human activities. Hence, we sought to determine how treelines in the Trans-Himalaya region and 105 

Hengduan Mountains are responding to climate change across adult growth and tree 106 

establishment. To do so, we quantified climate-growth relationships at treeline ecotones, 107 

analysed spatiotemporal distribution of adults and juveniles in the treeline ecotone, and 108 

quantified approximate shifts of the treeline. Specifically, we aimed to (1) identify limiting 109 

factors of tree growth at high mountain treelines, and (2) analyze spatiotemporal dynamics of 110 

altitudinal treeline. 111 

2 Methods 112 

2.1 Study site description 113 

The study was carried out in the Trans-Himalayan zone of central Nepal and Hengduan 114 

Mountains (Southeast Tibet) of China. In central Nepal, the study sites are located at Chimang 115 

(28.72° N, 83.69 E, 3500-3638 m asl) and Lete lekh (28.61° N, 83.59° E, 3900-4100 m asl) in 116 

the southern part of Mustang District (Fig. 1). Mustang represents a typical rain shadow zone in 117 

the central Himalaya, surrounded by high mountains in the southeast and west, and constitutes 118 

only about 3.24% land as forests in the southern part (Government of Nepal 2010). The northern 119 

part lies in the Trans-Himalayan semi-arid dry zone, and the further north has the Tibetan type of 120 

highland forming the driest zone of Nepal (Lomanthang: 200 mm annual rainfall) (Stainton 121 
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1972; Schickhoff 2005).  We contrasted a relatively dry region (Chimang) with about 390 mm 122 

annual precipitation and a relatively wet region (Lete) with about 1300 mm annual precipitation 123 

in our study. In Hengduan Mountain, the study was conducted at Tianbao Mountain in Sangri-La 124 

County (Yunnan province; 27.61° N, 99.89° E, 4000 m asl) and at Maan Mountain in 125 

Xiangcheng county (Sichuan province; 29.320 N, 100.540 E, 4400 m asl) of China (Fig. 1). 126 

Maan Mountain in Xiangcheng County is situated at the western Sichuan and Eastern Tibet 127 

coniferous forest region characterised by high mountain, deep valleys, and highlands with 128 

a monsoon-influenced humid continental climate on the southeastern edge of Qinghai-Tibet 129 

Plateau, where the altitude varies from 1500 to 6000 m (Wang et al. 2012). The meteorological 130 

data showed mean annual rainfall of 633 mm with mean summer rainfall (June-September) 131 

accounting for about 84% of annual rainfall at Daocheng (northern Hengduan region) (1958-132 

2014 AD as shown by the climate station data: National Meteorological Information Center of 133 

China). Meteorological records showed distinct climatic trend in Himalaya and Hengduan 134 

Mountains (Fig. 2). Trans Himalayan sites (Lete and Chimang) showed significant warming with 135 

a consistent increase of annual temperature during recent decades; these sites showed distinct 136 

rainfall pattern; Lete (L1, L2) being relatively moist with a significant increase in annual rainfall, 137 

and Chimang (C1, C2) being relatively dry due to stable trend of rainfall.  138 

The Hengduan Mountain region showed significant warming in recent decades with 139 

consistent increase in mean temperature (Fig. 2). Tianbao treeline site (Tb) showed a stronger 140 

warming trend than Xiangcheng treeline sites (X1, X2) in the same time period (Figure 2), likely 141 

due to the complex topography of the region. Both sites in Hengduan region showed a stable 142 

trend in precipitation.  143 
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We selected four treeline species from these regions, two evergreen; Abies spectabilis (D. 145 

Don) Spach and Abies georgei var. smithii (Viguie & Gaussen), and two deciduous; Betula utilis 146 

(D.Don) and Larix potaninii Batalin (var. macrocarpa). A. spectabilis (Himalayan fir) usually 147 

grows under moist climatic conditions in sub-alpine Himalaya forests (3000 to 4000 m asl), 148 

occasionally extending its upper limit to 4300 m asl. It is usually associated with B. utilis and 149 

Rhododendron campanulatum at its upper limit (Yadav et al. 2004).  Betula utilis (Himalayan 150 

birch) is a moderate-sized (< 20 m tall) broadleaved pioneer tree species and dominates an 151 

extensive area of subalpine and alpine forests up to 4500 m elevation, quite close to glaciers on 152 

northern slopes of the inner Himalayas (Stainton 1972; Miehe et al. 2015). Abies georgei var. 153 

smithii (Viguie & Gaussen) is a common tree species up to 30 m tall and found in subalpine dark 154 

coniferous forest on the southeast of Qinghai-Tibet Plateau, growing mostly as alpine-subalpine 155 

coniferous forests at 2500-4200 m. Whereas, Larix potaninii (Chinese larch) is usually found in 156 

mountains and river basins from 2500-4600m asl.  growing up to 50 m tall this is one of the 157 

earliest species used in dendroclimatic studies in China and is highly sensitive to environment 158 

variations, exhibiting tremendous potential for usage in dendroclimatology (Sun et al. 2010).  159 

2.2 Sample collection and processing 160 

Field study and tree core sample collection were carried out during September of 2014 in the 161 

Himalayan sites and, during March-June of 2015 in Hengduan sites. Plot-sampling by placing 162 

elevation transects (20 m × 90-120 m) across the alpine treeline ecotone were laid to include the 163 

uppermost species’ limit (irrespective of age) and timberline trees. Altogether we studied 7 164 

transects in monospecific treelines; two at three treeline sites and only one at Shangri-La treeline 165 

site. We defined treeline as the uppermost elevation of trees (2 m height) and timberline as the 166 

uppermost closed forest with tree cover (trees > 5 m height) of at least 30% (Holtmeier 2003). 167 
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The longer axis of each plot was parallel to the altitudinal gradient of subalpine forest to alpine 168 

shrub land. For each plot, the location of each individual tree was mapped. The altitudes of lower 169 

and upper parts of the plots were recorded by GPS.  170 

2.3 Tree ring series 171 

Tree cores were collected from A. spectabilis, B. utilis, A. georgei and L. potaninii using a 5.5 172 

mm increment borer. One, two or multiple cores were extracted from the base of each tree (basal 173 

tree core: below 30 cm height). Tree cores were air dried and mounted on sample holders with 174 

vertical alignment of tracheids. The surface was then sanded using progressively finer sandpaper 175 

until the ring boundaries were visible (Fritts 1976). Ring widths were measured at a resolution of 176 

0.01 mm with a LINTAB II measuring system (Rinntech, Germany). Tree cores were cross-dated 177 

by visual inspection (Stokes and Smiley 1996) and by statistical tests (sign-test and t-test) using 178 

the software package TSAP-Win (Rinn 2003). We produced the individual site chronologies for 179 

each treeline site, however a composite site chronology was produced by combining Chimang 180 

(C1 and C2) treeline sites as the sites were close to each other. Ring-width measurements were 181 

detrended with a negative exponential or a linear regression function, with the help of ARSTAN 182 

software (Cook 1985). Detrending was performed to maximise the common signal among 183 

individual tree-ring series (Cook and Kairiukstis 1990). Variance stabilization (Osborn et al. 184 

1997) was applied to adjust for changes in variance associated with declining sample size 185 

(number of trees) over time. Descriptive statistics were calculated for the standardized 186 

chronologies (Parr and Phillips 1999). The quality of site chronology was indicated by signal-to-187 

noise ratio and expressed population signal (EPS). A level of 0.85 for EPS was considered to 188 

indicate satisfactory quality and characteristics of a chronology (Wigley et al. 1984).  189 
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2.4 Stand age structure  190 

We dated the stand age structure of treeline ecotones by ring counts of the basal tree cores of 191 

each individual tree. In the case of tree cores with missed pith, the number of missing rings was 192 

determined by geometric method (Duncan, 1989) to estimate the age of the tree. The ages of 193 

saplings and seedlings (height < 2 m and DBH ≤ 5 cm height) were estimated non-destructively 194 

in the field by counting terminal bud scars along the main stem (Camarero and Gutierrez 2004), 195 

and the seedling/sapling ratio was calculated for each treeline site. We also recorded all dead 196 

trees per transect during the field visit. We surveyed a total of 954 individuals of treeline species 197 

(480 trees, 209 saplings and 175 seedlings) in seven treeline ecotones (C1, C2, L1, L2, Tb, X1, 198 

and X2) (Fig. 7). The seedlings >20 cm tall were only included in density estimations 199 

considering low likelihood of successful establishment of smaller seedlings (< 20 cm tall).   200 

2.5 Treeline movement 201 

The potential advance of the tree species limit for each treeline transect within study area was 202 

calculated by subtracting the elevation of oldest position of the tree limit (down slope) from the 203 

elevation of the youngest tree (2 m height) position (upslope) and using the following equation 204 

(Gamache and Payette 2005).  205 

Rate of shift (per year)  Upper most elevation of youngest tree – upper most elevation of oldest 206 

tree /Age of oldest tree – Age of youngest tree 207 

Data analysis 208 

Growth–climate response was analyzed by individual regression models and stepwise regression 209 

models. Monthly climate comparison of 19-month period from June of the year prior to ring 210 

formation, up until December of the year of ring formation, as well as during winter (previous 211 

year November-current year February), spring (current year March-May), summer (current year 212 
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June-September) and annual climate. These periods include late growing season of previous 213 

year, intervening winter/spring and the growing season of the current year of ring formation 214 

which allows an evaluation of any effects of preconditioning by climate before the growing 215 

season (Fritts 1976; Cook & Kairiukstis 1990; Biondi & Waikul 2004). Analysis of variance 216 

(ANOVA) was used to estimate the different in ring-width indices (RWI) between and among 217 

the sites with Tukey’s Post-hoc test at 95% confidence intervals level (p = 0.05). We used 218 

multiple regression to determine the coefficient of determination (R2) and predicted the 219 

relationship between RWI and climate variables. We also used Person Correlation to establish 220 

the relationship between climate variables and tree establishment year. Climatic data were 221 

collected and computed from daily data for the period of 1976–2012 from central Himalaya sites 222 

(Thakmarpha and Lumle meteorological stations of Nepal) and Hengduan Mountain sites 223 

(Shangri-La and Daocheng meteorological stations of China), and the data were obtained from 224 

Department of Hydrology and Meteorology Government of Nepal, and National Meteorological 225 

Information Center of China.  226 

To determine which of our potential predictor variables were correlated to RWI, we first 227 

performed simple linear regression for each variable and RWI of trees from all sites. This was 228 

performed separately for each site. Based on this initial analysis, we dropped predictors which 229 

were not significantly correlated (p > 0.05) to the ring width indices for the respective 230 

comparisons. The remaining predictors were used in a stepwise regression. Variables were 231 

included in the model based on Akaike Information Criterion (AIC) adjusted for small sample 232 

size such that the summed probability of the models (Buckland et al. 1997, Calcagno and de 233 

Mazancourt 2010). To further simplify the multiple regressions and develop the final models, we 234 
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eliminated variables which were highly correlated and with no biological relevance. Statistical 235 

analyses were performed using R 4.0.3 (R Development Core Team 2020).  236 

3. Results 237 

3.1 Tree Ring-width Chronology 238 

We produced well replicated ring-width chronologies with length from 68 to 374 years from six 239 

sites of the central Himalaya and Hengduan Mountains (combining two nearby transects of A. 240 

spectabilis sites in Himalaya) (Fig. 3). These chronologies showed valid statistical criteria used 241 

in common dendrochronological studies including mean inter-series correlation (Rbar), mean 242 

sensitivity, mean ring-width index, standard deviation, first-order autocorrelation and expressed 243 

population signal (EPS) values (Table 1). The population representation for sampled trees with 244 

EPS > 0.85 is usually considered as a reliable indicator. However, we considered tree-245 

chronologies from the year 1976 for subsequent analyses given that available instrumental 246 

climate data were limited to this period.  247 

3.2 Growth climate response 248 

After examining growth climate correlations, we emphasized monthly and seasonal 249 

variables which revealed a significant relationship with radial growth (Fig. 4, p < 0.05). The 250 

growth climate analysis demonstrated contrasting climate signal in tree rings from Trans-251 

Himalayan and Hengduan Mountain sites with strong precipitation and temperature signals at 252 

Trans-Himalayan sites and mainly temperature signal at Hengduan Mountains (Fig. 4 and Table 253 

2).  254 

Considering regression models with individual variables, some of the topmost 255 

influencing variables on tree growth (A. spectabilis) across treeline of Trans-Himalayan site (C) 256 
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were precipitation from May and Winter, and January minimum temperature, April average 257 

temperature and growing season temperatures (p < 0.05, Figs. 4, 5 and 6). Tree growth of 258 

relatively moist L1 site was strongly related to precipitation from January and March, and 259 

previous August average temperature, January maximum temperature, March average 260 

temperature and growing season average temperature whereas L2 was related to March 261 

precipitation, March average temperature, and growing season average temperature. Tree growth 262 

of Hengduan site was primarily related to only temperature variables (p < 0.05, Figs. 4, 5 and 6). 263 

Tree growth in Tb site was strongly related to minimum temperature of January, August and 264 

winter months. August average temperature and September average temperature were also 265 

related to growth of trees in rage Tb site. RWI of X1 site was corelated to minimum temperature 266 

from September (previous), January, September, winter, summer months, and average 267 

temperature of May, August, September, growing season months (p < 0.05, Figs. 4, 5 and 6). 268 

However, the strength of the relationship was slightly different. 269 

Multiple regression analysis of climate variables with RWI yielded a regression 270 

coefficient (R2) of 0.50, 0.61, and 0.49 across relatively dry sites (C) and moist sites (L1 and L2) 271 

of Trans-Himalaya, respectively (Table 2). Annual growth of A. spectabilis was primarily 272 

influenced by temperature and precipitation. However, the strength of the relationship with 273 

temperature (inverse relation with growing season maximum and January minimum temperature) 274 

was greater compared to that of precipitation (positive relation with growing season 275 

precipitation). Annual growth of B. utilis tree across the moist treeline site of Trans-Himalaya 276 

(L1 and L2) showed an inverse relationship with January precipitation and growing season 277 

average temperature and was positively related to March precipitation. However, at site L2, RWI 278 
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was related to August precipitation from the previous year (negative) and January maximum 279 

temperature of the current year. 280 

 Multiple regression analysis of climate variables with radial growth yielded a total R2 = 281 

0.34, 0.51, and 0.52 across relatively dry sites (Tb) and cold alpine site (X1 and X2) of 282 

Hengduan Mountains, respectively (Table 2). August average temperature from the previous 283 

year was primarily related to RWI of A. georgi across the dry treeline (Tb) of Hengduan 284 

Mountain. In addition, previous growing season precipitation and current August minimum 285 

temperature influence the radial growth of A. georgei.  Radial growth of L. potaninii across the 286 

alpine tree line site of Xinagcheng (X1, and X2), was primarily influenced by September 287 

minimum temperature from previous year. The other related variables for tree growth of L. 288 

potaninii were current growing season average temperature in the X1 site while current 289 

minimum temperature of September and summer (negative relation) influenced the growth of L. 290 

potaninii across the X2 site.  291 

3.3 Stand age structure  292 

We found that the seedling density was maximum at L1, L2 and X1 whereas it was minimum at 293 

X2 showing considerable spatial heterogenity in tree establishment. We observed a similar 294 

recruitment pattern in all transects: the largest number of individuals was recorded for 10–30 295 

years of age (most of them were established during 1990 to 2000). The maximum recruitment 296 

occurred at the highest elevation at all sites except X1 and X2, which showed very poor 297 

regeneration at upper edge of treeline ecotone, and the treeline retreat in the recent decades (after 298 

1990) (Fig. 7).  299 
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3.4 Treeline movement 300 

The treeline position in each plot showed evidence of considerable range shifts ranging from 301 

0.11 − 1.74 m year -1, with some sites showing evidence of a changing treeline over centuries. 302 

We found site specific elevation of treelines; the treelines were at lower elevation in Himalayan 303 

sites. There is evidence that treelines have shifted in all the sites assessed with future potential of 304 

shifting besides X1; which did not show tree establishment at upper elevation since 1950. The 305 

maximum shift indicated was observed at birch (B. utilis) treeline (L2; 1.74 m year -1) followed 306 

by larch (L. potaninii) treeline (X2; 1.5 m year -1, X1; 1.4 m year -1).  307 

We observed greater variation in the position of the treeline and tree species limit across 308 

treeline site (C1) where A. spectabilis seedling was recorded at 38 m above the treeline (C1). In 309 

some sites, the treeline itself represented the species limit (L2, Tb, X1, X2).  The position of the 310 

treeline varied greatly among the transects (C1; 3637 m asl, C2; 3513 m asl, L1; 3950 m asl, L2; 311 

4100 m asl X1; 4444 m asl, X2; 4490 m asl) within a short distance (< 5 km) and in the same 312 

mountain slope. We also observed a poor tree establishment at X1 and X2 sites in the recent 313 

decades, with treeline itself representing the upper species limit.  314 

4. Discussion 315 

 Our goal was to assess how climate factors affect radial growth and spatiotemporal 316 

dynamics of different species across timberline and treeline of the Trans-Himalayan region and 317 

Hengduan Mountains of China. Along with various studies on climate change impacts on tree 318 

growth across these regions (Fan et al. 2009; Liang et al. 2016; Tiwari et al. 2017a), our study 319 

expands and adds empirical evidence of tree growth and interactions of climate variables across 320 

high altitude. Overall, precipitation and temperature from current and previous year were related 321 
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to site-specific radial growth. We found that precipitation showed both positive and negative 322 

influence and average temperature inversely influence the radial growth of B. utilis across moist 323 

site (L1, L2) while precipitation and temperatures both showed negative impacts on radial 324 

growth of A. spectabilis on dry site (C) of Himalayan treeline.  In contrast, only temperature of 325 

various months and growing season from previous and current year controlled the radial growth 326 

of A. georgei (Tb) and L. potaninii (X1, X2). There is higher potential of treeline shifts 327 

associated with changing climate across the Trans-Himalayan region, whereas low potential of 328 

treeline shift despite climate suitability in the Hengduan Mountain sites in China. 329 

4.1 Climate growth response  330 

Our results showed that the radial growth of trees is strongly controlled by precipitation and 331 

temperature at Trans Himalayan sites. The moisture sensitivity of tree growth has been observed 332 

in Himalaya and high mountains of the world (Stahle and Hehr 1984, Qi et al. 2015; Lopez et al. 333 

2017, Tiwari et al. 2017a, b; Sigdel et al. 2018). The higher temperature in the early growing 334 

season (March-May) induces drought stress, and the rainfall during this period is beneficial for 335 

tree growth as evidenced by our findings (fir and birch). And these results are similar with 336 

growth climate response in central and eastern Himalaya (Dawadi et al. 2013; Liang et al. 2014; 337 

Tiwari et al. 2017a; Gaire et al. 2017), and in treeline-forming Betula species (Takahashi et al. 338 

2005; Wang et al. 2013). Sano et al (2015), Gaire et al (2014) and Tiwari et al (2017b) reported 339 

importance of spring season moisture coupled with warm-day temperature (Tmax) for radial 340 

growth in the region. Gaire et al (2014) also found that growth is typically sensitive to growing 341 

season temperature of tree species at fir treelines in eastern Himalaya and central Himalaya, and 342 

Schwab et al (2018) showed the stronger correlation between tree radial growth of Himalayan fir 343 

and 20th century temperature as indicated by blue intensity (BI) as the climate proxy. Our 344 
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findings confirm spatial variability in climate and growth response in Himalayan topography, 345 

particularly since the eastern Himalaya region is wetter than its drier western counterpart 346 

(Shrestha et al. 2012). Spring season warming coupled with higher radiation initiates early 347 

melting of snow and increased atmospheric evaporative demands. This amplifies exposure of the 348 

ecotone to drought until the onset of summer precipitation (Fritts 1976; Bhattacharya et al. 2006; 349 

Cook et al. 2003, Winkler et al. 2018). A frequent existence of narrow and missing growth rings 350 

in birch across central Himalayan also highlights that drought stress affects birch radial growth 351 

(Liang et al. 2014).  352 

In contrast to Himalayan sites, we found strong temperature sensitivity of tree radial 353 

growth in Hengduan Mountain sites (Fig. 4). The RWI of A. georgei across timberline was 354 

significantly correlated to minimum temperature of August, and to precipitation of previous 355 

year’s August showing sensitivity to moisture as well (Fig.5). The radial growth of A. georgei 356 

(Tb) was positively correlated with minimum temperature and mean temperature during winter 357 

and summer months, highlighting the potential for a positive impact of increasing temperature 358 

for densification and upward shifting of treelines. However, winter temperature sensitivity of 359 

ring width of several treeline conifers was also reported from SE Tibet and NW Yunnan 360 

(Bräuning and Mantwill 2004; Bräuning and Grießinger 2006; Fan et al. 2009). In such cases, it 361 

was expected that warmer conditions during winter improve the storage of higher levels of 362 

carbohydrates to regulate root system activity and improve plant productivity (He et al. 2013). 363 

Our finding on the significant influence of previous year’s September temperature on radial 364 

growth of Larch tree across treeline (X1, X2) agrees with past studies (Sun et al. 2010; Ou and 365 

Qian 2006; Zhang et al. 2016).  366 

  367 
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4.2 Treeline movement 368 

Our results demonstrate species specific stem density in the treeline ecotones, birch with 369 

maximum and larch with minimum stand density. Site specific treeline dynamics has been 370 

already reported from Himalayan region (Gaire et al. 2017; Sigdel et al. 2018). We found 371 

improved tree establishment (as per age of individuals) and treeline shifts only at moist sites for 372 

birch (L1, L2), where temperature and precipitation both are increasing significantly. Similarly, 373 

elevated temperature in May at alpine environment for larch trees (X1, X2) in the past was 374 

primarily related to improved radial growth. 375 

Stand densification has been widely reported in various treelines ecotones in Himalaya 376 

and Tibet (Gaire et al. 2014; Liang et al. 2011a, 2016; Lv and Zhang 2012). Given the higher 377 

density of juveniles that preferentially established in recent decades (Fig 7), all the ecotones now 378 

indicate potential for range shift of treelines. While demographic niche differentiation can lead 379 

seedling location to be a poor indicator of subsequent successful transition to adulthood, this 380 

transition from seedlings into trees is considered as the critical determinant of sustainable 381 

regeneration and treeline movement (Vetaas 2000; Camarero and Gutierrez 2007; Lv and Zhang 382 

2012). The incidence of saplings at or above the adult distribution limit in Fig. 6 demonstrates 383 

the potential for ongoing shifts of the treeline ecotones of our study sites.  384 

The higher frequency of tree establishment at the upper edge of treeline is mainly due to 385 

increased temperature accompanied by enough moisture (Cook et al. 2003; Sano et al. 2005; 386 

Shrestha et al. 2012). However, the hotter summer (July) may also create desiccation and 387 

drought stress in case of depleted soil moisture and affect recruitments (Hughes et al. 2009; 388 

Fajardo and McIntire 2012). The higher sensitivity of minimum summer temperature and spring 389 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

season precipitation with regeneration was also documented in Picea schrenkiana from treeline 390 

ecotone of Tian Mountains of China (Wang et al. 2006).  391 

In agreement with our study, the positive relationship between climate and regeneration 392 

of A. spectabilis during warm winter and relatively cold summer was reported by Cook et al 393 

(2003). We affirm the important role of temperature in growth and regeneration of A. spectabilis 394 

at the treeline as mentioned by Gaire et al (2014), although the correlation with radial growth in 395 

our case is not significant. Contrary to our findings, Liang et al (2014) found higher moisture 396 

stress to the radial growth of B. utilis in Nepal Himalaya due to the decreasing trend of 397 

precipitation in the region. We observed a stronger positive relationship between temperature 398 

and densification of stand of A. spectabilis compared to that of rainfall. It indicated that the 399 

juveniles are favored by warming temperature and the adults to precipitation (Lv and Zhang 400 

2012).  401 

We reported great variability in position of treeline in the nearby sites (< 5 km) within the same 402 

mountain slope, and rate of upward shifting of treeline, and this variability could be the outcome 403 

of human impact in the past including logging, grazing and fire that caused the decline in land 404 

use intensity as indicated by Schickhoff et al (2015). Different slope exposure and wind velocity 405 

(Greenwood et al. 2014), and biotic interactions (Liang et al. 2016) are likely to determine the 406 

position of treeline. The maximum shift of treeline was observed at Betula site (L2) linked to the 407 

increasing average temperature and precipitation in the region. As an early successional species 408 

birch also has higher regeneration potential on exposed sites of the upper treeline (Shrestha et al. 409 

2007). Furthermore, the maximum density of tree individuals and higher seedling sapling density 410 

within the plot indicated the higher potential for future shift. Our findings agree with treeline 411 

shift reports in the Himalaya (Dubey et al. 2003; Gaire et al. 2014) with considerable recruitment 412 
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in the recent decades especially after 1950s as reported by (Liang et al. 2011b; Shrestha et al. 413 

2015; Schickhoff et al. 2015).  414 

 We report higher regeneration, increased tree establishment and invasion into treeless 415 

areas above the forest limit, as directional changes readily attributed to effects of climate change. 416 

However, in most cases, pastoral abandonment or other human impacts also drives treeline 417 

dynamics (Holtmeier 2009; Schickhoff 2011), excessive grazing pressure and widespread fire 418 

were reported as the main agents for altering treelines in Himalaya (Beug and Miehe 1999, Wang 419 

et al. 2019b). Along with the sampled transects, we did not observe any recent cut stumps and 420 

any recent fire incidence in all the sampled ecotone showing diminished anthropogenic pressure 421 

in recent years. However, a proportion of tree cores (13% in C1 and 17% in C2) showed fire 422 

scars dated back to 20 to 30 years indicating the incidence of past fire. Also, we found evidence 423 

of cattle herbivory in all the sampled ecotone, indicating that disturbance factors are one of the 424 

key drivers of treeline dynamics as explained by Schickhoff et al (2015). Notably, our study site 425 

in Himalaya was included in Annapurna Conservation Area established in 1992, which 426 

considerably controlled forest fire and firewood collection. Furthermore, changes in land use 427 

have been associated with the gradual shifting of local people from livestock farming to 428 

agriculture, low consumption of firewood (provision of hydroelectricity) and migration of people 429 

to lower valleys (Jaquet et al. 2016; KC et al. 2017). These changes in land use pressure and fire 430 

frequency will undoubtedly have contributed to facilitate forest expansion towards higher 431 

elevations in conjunction with the climatically driven changes reported above.  432 

Despite favourable climate, considerable gaps in the tree establishment across alpine 433 

region (X1, X2) due to low regeneration of larch tress in the recent decades could be associated 434 

with poor soil quality and anthropogenic disturbance via logging operations. Our results 435 
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indicated that Hengduan larch (X1, X2) and silver fir (Tb) have experienced greater influence of 436 

disturbances for tree establishment in treeline. The poor regeneration in these sites (X1, X2) 437 

might lead to treeline retreat in these sites in the future if adult individuals die or removal 438 

through exploitation increases.  The potential for such retreat is already evident at X1 and X2, 439 

especially after the 1990s. Therefore, we highlight that modifying factors (biological, 440 

geomorphology, human interference) in addition to climate may drive tree establishment and 441 

stand densification in treelines and it is, therefore, inadvisable to overlook local context when 442 

predicting treeline changes across broad regions. 443 

5 Conclusions 444 

We report site specific growth climate responses and treeline inertia based on tree rings and 445 

demographic assessment of treeline ecotones at the Trans-Himalayan region of Nepal and 446 

Hengduan Mountain regions of China. It was observed that radial growth across the Trans-447 

Himalaya is strongly determined by both precipitation and temperature while in the alpine region 448 

of Hengduan Mountains temperature alone has a strong influence. While the Trans-Himalaya 449 

region is experiencing rapid shifts in treeline with higher recruitment of tree species across 450 

treeline ecotone, Hengduan treelines are experiencing slow recruitment and upward movement of 451 

treeline. The contrasting local patterns of climate change are one of the critical drivers of these 452 

differences in treeline shifts at high altitudes in face of warming temperatures and higher 453 

variation in precipitation trends. We emphasize that impact of changing growth in trees may 454 

influence treeline inertia; however, the geomorphological factors, human disturbance and biotic 455 

interaction are also the strong drivers for the changes in treeline ecotones. Our results point to the 456 

importance of better assessment and integration of local anthropogenic context, impacts of 457 
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belowground environmental factors and biotic interactions on juveniles and adults to increase 458 

accuracy of prediction on treeline dynamics under changing climate.   459 
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Figure 1. Location of study area across trans-Himalaya region of Nepal (A) and Hengduan 

mountains of China (B) (upper panels). Section of tree cores including (a) Abies spectabilis (red 

arrow showing frost ring), (b) Larix potaninii, (c) Abies georgei, and (d) Betula utilis 
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Figure 2. A 37 years’ average monthly temperature and precipitation of the study area with an 

average precipitation (dotted line). Time series of average annual precipitation and temperature 

of all study sites with an average precipitation (dotted line) for 37 years. Temperature and 

precipitation were computed from daily data obtained from Department of Hydrology and 

Meteorology Government of Nepal, and National Meteorological Information Center of China. 

 



 

Figure 3. Standardized tree-ring width index (RWI) chronology with sample size with scale on 

the right axis for the study sites after 1987. The red smoothing line is a five year's cubic spline 

fit; blue lines indicate number of tree cores. 



 

Figure 4. Correlations of tree ring width (RWI) chronologies of different sites across Trans 

Himalayan and Hengduan regions. Horizontal dotted lines at r = 0.32 and r = -0.32 form a 95% 

CI; significant correlations (p < 0.05). Blue, and red colors indicate precipitation, and 

temperature, respectively. (Abbreviations: pr = previous, PPT = precipitation, Tmin = minimum 

temperature, Tmax = maximum temperature, Grow = growing season). All variables with one or 

more significant correlations are presented.  

 



 

Figure 5. Time series of standardized annual RWI and current year growing season (March-May) 

maximum temperature and total precipitation across study area. See table 1 for the site 

description. 

 



 

 

 

Figure 6. Relationship between standardized RWI and (a) January minimum temperature and (b) 

May precipitation for A. spectabilis,(c) growing season average temperature for B. utilis, and (d) 

previous year September minimum temperature for L. potaninii. 

 



 

Figure 7. Spatiotemporal dyanmics of treeline in the treeline plots, horizontal axis showing year 

of tree establishment, and vertical axis showing elevation of tree specimen in each treeline 

ecotone. The upper dashed line in each plot represents elevation of modern treeline, the lower 

dashed line in each plot represents the position of oldest tree in the plot. See table 1 for site 

descriptions. 

 

 



 

Table 1 Summary statistics including average tree-ring series length, inter series correlation of chronology with 

master chronology (rbt), mean sensitivity, autocorrelation (AC), and expression population signals (EPS) value for 

study site. See Tables 1 and 2 for study area descriptions.  

 

Site Chronology  

(years) 

Trees (cores) rbt Mean 

sensitivity 

EPS All series Rbar 1st order 

AC 

A. spectabilis C 68 36 (40) 0.47 0.326 0.931 0.187 0.612 

B. utilis L1 

 

186 21(23) 0.49 0.382 0.907 0.226 0.062 

L2 107 52 (56) 0.51 0.324 0.954 0.415 0.026 

A. georgei 

ATE(Tb) 

374 19 (26) 0.45 0.106 0.756 0.284 -0.001 

L. potaninii X1 111 54 (76) 0.52 0.235 0.875 0.514 0.539 

X2 131 20 (35) 0.54 0.230 0.969 0.463 0.789 
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Table 2 The results of multiple regression for annual wood RWI across the study. The coefficient of determination 

(R2) for each variable was estimated using stepwise regression model. The negative sign indicates a negative 

relationship. Abbreviation: pr - previous year, ppt – precipitation, t - temperature, max: maximum, min: minimum, 

Grow – growing season.  See Table 1 for site code. 

Trans-Himalaya 

Sites pr Aug 

tavg 

Jan 

ppt 

Mar 

ppt 

May 

ppt 

Winter 

ppt 

Grow 

ppt 

Jan 

tmax 

Grow 

tmax 

Jan 

tmin 

Grow 

tavg 

Total 

C 

   

0.10 -0.10 

  

-0.05 -0.25 

 

0.50 

L1 -0.10 -0.11 0.07 

   

0.09 

  

-0.24 0.61 

L2 

 

-0.07 0.26 

      

-0.16 0.49 

 

Hengduan Mountain 

Sites pr Aug 

ppt 

pr Sep 

tmin 

Grow 

ppt 

Aug 

tmin 

Sept 

tmin 

Aug 

tavg 

Grow 

tavg 

Summer 

tmin 

Total 

Tb 0.10 

 

0.10 0.14 

    

0.34 

X1 

 

0.31 

    

0.21 

 

0.51 

X2 

 

0.33 

  

0.13 

  

-0.06 0.52 

 

 




