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Abstract
Forests are attracting attention as a promising avenue to provide nutritious and “free” food without damaging the environment. Yet, we 
lack knowledge on the extent to which this holds in areas with sparse tree cover, such as in West Africa. This is largely due to the fact that 
existing methods are poorly designed to quantify tree cover in drylands. In this study, we estimate how various levels of tree cover across 
West Africa affect children’s (aged 12–59 months) consumption of vitamin A–rich foods. We do so by combining detailed tree cover 
estimates based on PlanetScope imagery (3 m resolution) with Demographic Health Survey data from >15,000 households. We find 
that the probability of consuming vitamin A–rich foods increases from 0.45 to 0.53 with an increase in tree cover from the median 
value of 8.8 to 16.8% (which is the tree cover level at which the predicted probability of consuming vitamin A–rich foods is the 
highest). Moreover, we observe that the effects of tree cover vary across poverty levels and ecoregions. The poor are more likely than 
the non-poor to consume vitamin A–rich foods at low levels of tree cover in the lowland forest-savanna ecoregions, whereas the 
difference between poor and non-poor is less pronounced in the Sahel-Sudan. These results highlight the importance of trees and 
forests in sustainable food system transformation, even in areas with sparse tree cover.
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Better quality diets are key to solving the widespread problem of nutrient deficiencies. Yet, far too often, food and nutrition security 
policies focus on increasing agricultural production and access to sufficient calories as the main solution, which often results in de-
graded ecosystems. In this study, we examine the empirical relationship between having forests and trees in the surroundings and the 
probability of children consuming nutritious foods. Based on a sample consisting of >15,000 rural households living in West Africa, we 
show that even low levels of tree cover improve the likelihood of children aged 12–59 months consuming vitamin A–rich foods.
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Introduction
The current global food system is detrimental to both human 
and environmental health, with 800 million people undernour-
ished and around 2 billion consuming low-quality diets that 
can lead to micronutrient deficiencies, and dramatically rising 
rates of noncommunicable diseases, such as diabetes (1, 2). 
At the same time, agriculture is responsible for about a third of 
global greenhouse gas emissions (3), is the leading driver of de-
forestation (4), is the largest user of global freshwater with-
drawals, and is a major source of both freshwater and ocean 
pollution (5). A growing body of literature has shown the poten-
tial of forests and trees for providing dual benefits for both 
environmental sustainability and human health, primarily in 
middle- and low-income countries. For example, living in close 
proximity to forests has been shown to increase dietary diversity 
and consumption of nutrient-dense foods (6–10). Likewise, rural 
smallholders who incorporate trees on or around their farms 

have improved food security outcomes (11). However, there is a 
dearth of empirical evidence on whether these relationships 
hold in areas with sparse tree cover, despite such areas covering 
large parts of the world (12) and providing ecosystem services to 
large populations (13). Although multiple case studies from West 
Africa have indicated that even sparse tree cover could be posi-
tive for people’s diets (14–18), methods to assess global tree cover 
(19) have, until now, been insufficient to quantify tree cover in 

drylands (12, 20), thus hindering large-scale assessments on 
tree-diet linkages. The recent development of methods in com-
bination with access to imagery with a high enough resolution 
to identify single trees (12, 20, 21) provides an avenue to assess 
the effects of both forests and trees outside of forests on dietary 
quality. This is especially important in areas such as West Africa, 
our study area, because (i) there is a surprisingly high occurrence 
of trees outside of forests (20), albeit with their provision of a 
myriad of ecosystem services largely uncovered (22, 23), and (ii) 
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rates of undernourishment and malnutrition are generally high 
in this region (2).

In this study, we examine the linkages between various levels 
of tree cover across West Africa and people’s consumption of vita-
min A–rich foods. We focus specifically on vitamin A–rich foods 
given the high rates of vitamin A deficiency across West Africa 
(24). Vitamin A deficiency can lead to a number of health issues, 
including permanent blindness, or, in less serious cases, “night 
blindness”. West African countries (particularly Niger, Mali, and 
Guinea) had the highest rates of night blindness in pregnant wom-
en in 2005 (24) (unfortunately, there are no more recent statistics), 
with the exception of Ethiopia, which had the highest rate world-
wide. We investigate whether the effects of tree cover on people’s 
food consumption vary across ecoregions (Sahel-Sudan and low-
land forest-savanna; Fig. S1) and people’s poverty levels (meas-
ured as the living standards dimension of the multidimensional 
poverty index [MPI] (25)). We note that our data only comes 
from one single time point and that there is no experimental ma-
nipulation in our study design. As such, the effects of tree cover 
refer to associations in real-world settings, and we make no claims 
about causality. To examine the effects of tree cover on people’s 
food consumption, we combine tree cover estimates from 
PlanetScope imagery (3 m resolution) with Demographic Health 
Survey (DHS) data from >80,000 households, of which >15,000 
households have children aged 12–59 months, covering 10 coun-
tries in West Africa. Our approach uses a tree cover dataset based 
on state-of-the-art imagery (12), which allows us to also include 
areas with sparse tree cover, such as the Sahel. Because rainfall 
is an important determinant of tree cover in the region (26), we 
divide our study area into two regions with different rainfall pat-
terns using ecoregions from Olson et al. (27). The Sahel-Sudan 
ecoregion in the north receives much less rainfall than the low-
land forest-savanna ecoregion in the south and is characterized 
by different tree species (28). For both regions, we examine the 
linkages between tree cover and people’s dietary quality across 
different poverty levels.

The underlying assumption for our analysis rests on recent re-
search establishing that forests can provide considerable dietary 
benefits to households. That is, forests can improve people’s diets 
along four key pathways (6, 29, 30). The first and most direct path-
way is through the provision of wild foods, which include foods 
such as mangoes (Mangifera indica) and dark green leafy vegetables 
(e.g. baobab leaves [Adansonia digitata]) which tend to be very rich 
in vitamin A, and animal products (i.e. bushmeat and insects), 
which are a good source of bioavailable zinc and iron. Wild foods 
rarely make up the majority of the diet, instead supplementing 
what is available from agricultural production or markets. Wild 
foods thus tend to increase overall dietary diversity and can im-
prove the micronutrient adequacy of the diet (31, 32). The second 
pathway is through income gains from sales of nontimber forest 
products (NTFPs), which can facilitate the purchase of nutritious 
foods from markets (33). The third pathway is through the flow 
of ecosystem services from forests into surrounding agricultural 
landscapes, which can in turn increase and/or diversify agricul-
tural production (34). The fourth pathway is through the provision 
of fuelwood for cooking, which can improve nutrition by facilitat-
ing the preparation of a range of foods, particularly those with 
long cooking times (35), such as dark green leafy vegetables, often 
used in relish in West Africa. However, knowledge on the relative 
contribution of each of these four pathways remains limited, as 
existing studies have typically assessed these pathways in isola-
tion and in areas with dense tree cover (6, 30). Due to the nature 
of the DHS data on which we rely, it is not possible to assess the 

contribution of each of the four pathways. Yet, we advance exist-
ing knowledge by empirically assessing whether there is an asso-
ciation between tree cover and people’s consumption of 
nutritious foods in areas with sparse tree cover. Such assessment 
is an important first step to uncover whether regions, such as the 
Sahel, with mostly sparse tree cover, exhibit the productivity and 
species diversity needed to improve diets.

We first examined the relationship between tree cover (in a 
5-km radius around households) and the consumption of vitamin 
A–rich foods. The consumption of vitamin A–rich foods was a bin-
ary variable estimated using DHS data, whereby women were 
asked whether or not their children aged 12–59 months consumed 
vitamin A–rich foods within the last 24 h. We used a rigorous 
quasi-experimental matching technique (covariate balancing 
generalized propensity scores; CBGPS (36)) to adjust for the non-
random distribution (selection bias) of tree cover, our treatment 
variable of interest. By controlling for key covariates likely to af-
fect people’s diets (Table S1), we were able to isolate the relation-
ship between tree cover and the consumption of vitamin A–rich 
foods. The key advantage of the CBGPS approach is that it is ap-
plicable to continuous treatment variables, such as forest cover. 
We then combined this with generalized additive models (GAMs) 
(37), which have the advantage that they allow for nonlinear rela-
tionships. By combining these two approaches, our analysis 
presents an important step forward in teasing apart how various 
levels of tree cover affect consumption of a highly nutritious 
food group in nonlinear ways.

Results
Any increase in tree cover improves children’s 
dietary quality
We found that higher levels of tree cover were associated with an 
increased probability of consuming vitamin A–rich foods (P <  
0.001), especially in areas with very low levels of tree cover, where 
existing global assessments (19) have failed to accurately quantify 
tree cover (12). Specifically, our analysis revealed that an increase 
in tree cover from 8.8% (which is the median value across the 
>15,000 households with children aged 12–59 months) to 16.8% 
(the tree cover level at which the predicted probability of consum-
ing vitamin A–rich foods is highest) is associated with an increase 
in the probability of consuming vitamin A–rich foods from 0.45 
(credible interval 0.35–0.55) to 0.53 (credible interval 0.43–0.63; 
Fig. 1). This is a substantial increase given that just 41 and 50% 
of households consumed vitamin A–rich foods in the 
Sahel-Sudan and lowland forest-savanna ecoregions, respectively 
(Table S1). Moreover, we observed that when tree cover is above 
30%, which is already classified as a forest (38), the effect of trees 
flattens. This suggests that in West Africa, trees outside of forests 
(i.e. low levels of tree cover that do not constitute a forest) play a 
more important role than trees inside forests for people’s con-
sumption of vitamin A–rich foods, which is also where most of 
the people reside. Our findings further advance existing studies 
showing that living near, and having access to, forest landscapes 
is beneficial for the intake of vitamin A–rich foods (17, 31, 39). Yet, 
our analysis shows that the effect is not linear, with the main ef-
fect occurring at sparse tree cover across West Africa.

The effects of tree cover vary across poverty levels 
and ecoregions
We also examined whether the relationship between tree cover 
and children’s consumption of vitamin A–rich foods differed 

2 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae067/7604210 by D

em
entia Services D

evelopm
ent C

entre user on 10 July 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae067#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae067#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae067#supplementary-data


across two separate ecoregions (27) (the Sahel-Sudan ecoregion 
and the lowland forest-savanna ecoregion) and poverty levels. 
Overall, we see that in the Sahel-Sudan ecoregion, effects of tree 
cover are mostly equal among the poor and non-poor households, 
yet the non-poor benefit marginally more at 15–25% tree cover 
(P = 0.075, Fig. 2). Potential explanations for the non-poor benefit-
ing more may include income gains from sales of NTFPs, which 
can facilitate the purchase of vitamin A–rich foods from markets 
(33) (the second pathway potentially connecting tree cover to peo-
ple’s diets). In contrast, in the lowland forest-savanna ecoregion, 
the poor are more likely to consume vitamin A–rich foods at low 
levels of tree cover (P < 0.001). While this observation is well 
aligned with research showing that the poorest people often rely 
on the forest for collecting and consuming wild foods (40) (the first 
pathway potentially connecting tree cover to people’s diets), it 
adds to this literature by illustrating that it only happens at low 
levels of tree cover. That is, after the consumption of vitamin A– 
rich foods peaks at ∼18% tree cover, we observe a drop after 
which consumption levels remain relatively constant and the 
difference between poor and non-poor disappears. The fact 
that the non-poor households appear to be benefiting the most 
from sparse tree cover in the Sahel-Sudan ecoregion, whereas 
the opposite pattern is seen in the lowland forest-savanna eco-
region, can be explained by different characteristics of sparse 
tree cover. That is, in the lowland forest-savanna ecoregions, 
low tree cover levels likely represent deforested areas that host 

semi-agricultural species such as vitamin A–rich dark green 
leafy vegetables (41) that can be collected for free (by the poor). 
Such species are generally less common in areas with naturally 
low tree cover, such as the Sahel-Sudan ecoregion. Low levels of 
tree cover in the lowland forest-savanna ecoregion could also re-
present agroforestry systems that host trees yielding vitamin A– 
rich fruits such as mango.

Discussion
Our analysis reveals the importance of trees in areas with sparse 
tree cover, yet these are rarely taken into account in existing 
forest-diet research, primarily due to limitations in remote sens-
ing methods that are often not designed to quantify tree cover 
in drylands (12). While we recognize the potential dietary benefits 
of trees outside of forests in landscapes with relatively sparse tree 
cover, it is also critical to acknowledge that existing large-scale 
environmental policies in Africa, such as the AFR100 and the 
Great Green Wall restoration initiatives, are biased toward finan-
cing reforestation initiatives focused on the planting of highly vis-
ible, fast growing tree species (42) instead of food-trees. Future 
initiatives could be better targeted to preserve and increase spe-
cies with nutritional benefits (43). In the Sahel-Sudan ecoregions, 
examples include Moringa oleifera and A. digitata (baobabs)—both 
species that are able to grow in areas with sparse tree cover. 
Other examples of commonly observed species include Annona 
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Fig. 1. Effects of tree cover on consumption of vitamin A–rich foods. N = 15,875 rural households with children aged 12–59 months (81,296 rural 
households in total) in Senegal, Mali, Nigeria, Gambia, Benin, Guinea, Chad, Liberia, Sierra Leone, and Cameroon. The line indicates the fitted probability 
that the children in a household consumed vitamin A–rich foods. The shaded area shows the credible interval. The points indicate the average probability 
of consumption by clusters of households. The top chart shows the frequency of household observations across tree cover values, ranging from 39 to 
4,579.
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senegalensis (wild custard apple) and Salvadora persica (the tooth-
brush tree) (Table S2). Trees in the Sahel-Sudan might be especial-
ly important for other purposes too because they also serve as an 
important source of fodder, fuelwood, and fiber, and provide regu-
lating and supporting ecosystem services (22). In lowland forest- 
savanna areas with sparse tree cover, reforestation initiatives 
will have to account for the fact that these areas have likely 
already been deforested and any species of value will have been 
removed. Instead, such areas are likely inhabited by early- 
successional pioneer species, and invasive and exotic species 
(many of which are edible). As such, our results highlight how dif-
ferent ecoregions in West Africa exhibit different patterns in the 
benefits people can obtain from trees.

Another simple, yet far-reaching result, is that increases in tree 
cover above 30% will not necessarily increase children’s con-
sumption of vitamin A–rich foods. While we acknowledge that 
higher tree cover is critical for biodiversity, our results challenge 
the assumption of a linear relationship between tree cover and 
people’s dietary diversity (39). This result is similar to the findings 
from Ickowitz et al. (9) who showed how consumption of dark 
green leaves peaks at relatively low levels of tree cover before de-
clining. Our results also support previous assessments showing 
that areas outside forests, such as savanna areas, may provide im-
portant ecosystem services likely to be beneficial to diets (13). Yet, 
savannas are often neglected in restoration efforts as they are 
often seen as degraded forests (28, 44). The finding that high 
tree cover might do little to secure the consumption of vitamin 
A–rich foods can be due to a number of possible explanations. 
First, forest-based pollinators increase the production of domestic 

fruits in nearby areas, meaning that many scattered trees around 
the landscape might lead to more effective pollination than bigger 
areas of forest (45). Second, households are more prone to 
collect wild fruits and vegetables when traversing landscapes 
with many scattered trees rather than going deep into interior 
forest (40). This has, for example, been observed in Nigeria, where 
a recent study showed how vitamin A–rich foods (e.g. bush mango 
[Irvingiaceae]) were sourced more frequently among forest-edge 
communities when compared with interior forest communities 
(18). Third, in landscapes with sparse tree cover, there might be 
smaller areas of “managed forests” where valuable fruit trees 
are consciously maintained (46). Fourth, landscapes with very 
sparse tree cover could fail to supply diverse vitamin A–rich foods, 
resulting in people purchasing more of these foods. Finally, land-
scapes with high tree cover might include forests that are man-
aged for conservation with restricted access for communities 
(47). Future work should seek to create more explicit evidence 
on which of these explanations are prevalent in the Sahel-Sudan 
and lowland forest-savanna ecoregions.

Moreover, our analysis sheds light on the effects that trees can 
have on dietary quality across poverty levels. In the Sahel-Sudan, 
we show that increased tree cover has a positive effect across all 
poverty levels. This suggests that the absence of access to (free) 
vitamin A–rich foods from trees might not always be compensated 
by purchasing such foods instead. It also underlines the import-
ance of trees for the intake of vitamin A for a large population in 
the Sahel-Sudan. Nevertheless, we observe that although higher 
tree cover in general is beneficial, the least poor households ap-
pear to benefit marginally more from greater tree cover than the 
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Fig. 2. Effects of tree cover on consumption of vitamin A–rich foods per ecoregion and across poverty levels. N = 15,875 rural households with children 
under 5 years old (81,296 rural households in total) in Senegal, Mali, Nigeria, Gambia, Benin, Guinea, Chad, Liberia, Sierra Leone, and Cameroon. Lines 
indicate the fitted probability that the children in a household consumed vitamin A–rich foods—red line indicates a high level of poverty (MPI > 0.83— 
highest 20% of the population), blue line indicates a low level of poverty (MPI < 0.33—lowest 20% of the population). The shaded area shows the credible 
interval. The points indicate the average probability of consumption of groups of households with similar tree cover levels and MPI. The top charts show 
the frequency of household observations across tree cover values, ranging from 1 to 545 for the Sahel-Sudan ecoregions (N = 5,965), and from 11 to 136 for 
the Lowland Forest-Savanna ecoregions (N = 9,910).
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poorest. Tree-planting and regrowth initiatives, such as the Great 
Green Wall, should therefore ensure that additional trees would 
benefit all layers of society (42). Such focus is timely given the shift 
in species composition recently observed in the Sahel-Sudan; 
shrubs and highly drought-tolerant and exotic tree species are in-
creasing, whereas traditionally used, multifunctional species and 
larger trees are decreasing (48). In the lowland forest-savanna 
ecoregion, we see that the poorest people benefit the most from 
relatively low levels of tree cover, while the least poor benefit 
from higher levels of tree cover. In contrast to the Sahel-Sudan, 
low levels of tree cover in the forest-savanna ecoregion might still 
host dark green leaves, which are an important and easily access-
ible source of vitamin A, especially for the poor (Fig. S2). Any tree- 
planting and regrowth initiatives in the lowland forest-savanna, 
especially in deforested areas, would have to ensure that benefits 
from additional tree cover also spread to the poorest people.

In summary, our analysis links data on trees inside and outside 
of forests to people’s food consumption and poverty levels on a 
broad scale. We show how the presence of trees can potentially 
be important for the intake of vitamin A–rich foods—but that 
the effect is not linear as it levels off with more tree cover in the 
landscape. The next research step could be to examine how the 
presence of trees influences agricultural diversity, yields, and 
crop nutritional content (49). New remote sensing techniques 
that identify specific tree species would allow us to untangle the 
effects of trees and identify trees with the highest contribution 
to dietary quality (50). Moreover, studies linking trees outside of 
forests to people’s diets would benefit from more detailed food 
consumption data recording the quantity of different foods con-
sumed. Such data would allow for a better understanding of 
how trees affect people’s micronutrient intake—not just their in-
take of specific foods. This is particularly important in West 
Africa, where micronutrient deficiencies are widespread, with 
57% of the population being moderate or severe food insecure 
and 86% of the population unable to afford a healthy diet (2). 
Lastly, future studies would benefit from gathering data on where 
households source their food from, to illuminate whether (and to 
what extent) people are (i) consuming nutritious foods directly 
from trees scattered in the landscape or more dense forests or 
(ii) purchasing more nutritious foods.

Methods
Data
We used DHS household data from 10 countries in western Africa 
(Table S3). The DHS provides information on a range of socio-
economic and health variables and is available at https:// 
dhsprogram.com/data/available-datasets.cfm. In total, this study 
uses DHS data from 15,875 households from 2,587 rural clusters 
with at least one child aged 12–59 months. Clusters roughly corres-
pond to a village. DHS data were collected between 2014 and 2019 
across the 10 countries in western Africa. Geolocations are avail-
able for all clusters, but are displaced for confidentiality purposes. 
The displacement in a random direction is up to 5 km for 99% of the 
clusters, and up to 10 km for the remaining 1% of the clusters. To 
account for the displacement in geolocations, we used a 5-km buf-
fer around each geolocation when spatially overlaying the house-
hold data with tree cover data and other spatial data.

Consumption of vitamin A–rich foods
The DHS interviewed women in the households about their child-
ren’s food consumption over the previous 24 h. Women were 

asked whether their children had consumed any foods from 18 
predetermined food groups (e.g. eggs and dairy). We chose to focus 
on the consumption of vitamin A–rich foods by children aged 
12–59 months in this study due to (i) forests (and trees outside of 
forests) anticipated to host a multitude of vitamin A–rich foods, 
such as wild mango, and (ii) the high rates of vitamin A deficiency 
in many parts of Africa, which makes it paramount to identify 
avenues to improve vitamin A intake (24). Thus, we combined 
the three DHS food groups—vitamin A–rich fruits, vitamin A– 
rich vegetables and tubers—and dark green leafy vegetables to as-
sess children’s overall intake of vitamin A–rich foods. For the ana-
lysis presented in Fig. S2, we only included the consumption of 
dark green leafy vegetables.

Tree cover
We used tree cover data from a recent continental map of African 
tree cover in 2019 (12). Based on a deep-learning model applied to 
3 m PlanetScope imagery, this dataset includes tree cover from 
both forest and non-forest trees. For our analysis at the household 
level, the binary tree cover data were first aggregated to percent 
cover at 100 m resolution. The tree cover variable was then calcu-
lated as the mean percent tree cover in a 5-km buffer around each 
household.

Living standards
We were specifically interested in whether the effect of tree cover 
on the consumption of vitamin A–rich foods would vary across dif-
ferent levels of poverty. We used the living standards dimension 
of the MPI (MPI-LS (25)), as an indicator of the asset poverty of 
each household (Table S4). The living standards dimension varies 
from 0 to 1, with 1 being the most deprived. The MPI-LS is com-
posed of six indicators: (i) assets, (ii) electricity, (iii) sanitation, 
(iv) cooking fuel, (v) water source, and (vi) housing. Each indicator 
has an equal weight.

Ecoregion
We only included ecoregion as a covariate in the model that in-
cluded an interaction with ecoregion (presented in Fig. 2) and 
did not differentiate between ecoregions in our main analysis 
(presented in Fig. 1). Our study area covers four major ecoregions 
(27), which we lumped into two main ecoregions that represent 
the ecosystems in the north and south of our study area. Our first 
region consists of the Sahelian acacia savanna and Sudanian sa-
vanna (west and east) ecoregions. Our second region consists of 
the forest-savanna (Guinean and north-Congolian) and lowland 
forest (western Guinean, eastern Guinean, and Nigerian) ecore-
gions. We removed 319 clusters that overlapped ecoregions that 
are very small (e.g. deserts and xeric shrublands, montane forests, 
flooded savannas, and mangroves). We calculated the overlap of 
each cluster (and thus household) with each main ecoregion 
and assigned each household to the ecoregion with the largest 
overlap. To increase the contrast in this analysis, we removed 
127 clusters that overlapped our two main ecoregions.

Additional covariates
We controlled for a suite of biophysical and socioeconomic cova-
riates known to influence people’s diets—and thus potentially 
their consumption of vitamin A–rich foods. First, we controlled 
for household characteristics that are important predictors of 
household food consumption: household size (31), age of the 
household head (51), number of children under 5 years old, and 
the education dimension of the MPI (52) (Table S4). Second, we 
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controlled for agricultural characteristics (53): from the DHS, we 
extracted tropical livestock units (54) and agricultural land cover 
from Zanaga et al. (55). Third, we controlled for whether a conflict 
occurred in the past year before the survey, as (i) conflicts have oc-
curred in many West African countries over the last decade (56), 
and (ii) conflicts are known to influence people’s food intake 
(57). Fourth, we included geographical covariates that influence 
land suitability and access (58): slope, percentage of area covered 
by water, population density, and travel time to the nearest dense-
ly populated area. Geographical variables were calculated as the 
mean value within 5 km of the geolocated household. Finally, 
we included the country and season (dry/wet) during which the 
survey was conducted as dummy variables. Additional descrip-
tions and data sources for all covariates are available in Table S5.

Analysis
We used matching and nonlinear regression techniques to assess 
the effects of tree cover on the consumption of vitamin A–rich 
foods and dark green leafy vegetables. We conducted all statistical 
analyses in R (59).

We used CBGPS (36) to generate weights that adjust for the non-
random distribution of tree cover, our predictor variable of inter-
est. CBGPS is a form of propensity score matching and, in contrast 
to most other forms of matching, can be used when the predictor 
variable of interest is continuous. The CBGPS method produces 
weights that minimize the correlation between the treatment 
(tree cover) and covariates (Fig. S3). These weights are then used 
in subsequent models to reduce endogeneity between tree cover 
and other covariates, thereby reducing potential bias in the esti-
mates of tree cover on consumption of vitamin A–rich foods.

After matching, we used GAMs to analyze the effect of tree cov-
er on the dependent variable. GAMs have the advantage that they 
allow for nonlinear relationships. Linear models use a single coef-
ficient to model the relationship between predictor and outcome 
variables, but GAMs use a smooth function that allows the rela-
tionship to vary along the gradient of the predictor. Therefore, 
by using GAMs, we can assess the effect of tree cover across the 
entire gradient from bare ground to forest at each percentage of 
tree cover. We used the mgcv package in R to fit GAMs (37). In 
our main model setup, we included parametric terms for country, 
education, season, and conflict. We then included numeric cova-
riates as cubic regression smoothing splines, because they take 
into account both smoothness and local influence, and are widely 
used in models for nonlinear data (60). To reduce spatial autocor-
relation, we included geographic coordinates (latitude and longi-
tude) as a (default) thin smoothing spline.

Our main model takes the form:

g(μi) = Xiβ + fm(Tm) + f1(x1) + · · · + fm(xm) + f (lat, long), 

where g(μi) represents the response variable, Xiβ is the parametric 
part of the linear predictor, fm(Tm) represents the modeled smooth 
of tree cover Tm, fm(xm) are modeled smooths of numeric covari-
ates, and f (lat, long) is the modeled smooth of geographic location.

We used the bam function for large datasets, the default fREML 
method, the argument discrete = TRUE to ensure model conver-
gence, and a quasi-binomial distribution to model the consump-
tion of vitamin A–rich foods.

Because GAMs do not assume linear relationships, they are also 
better at capturing complicated interactions between predictor 
variables than linear models. We assessed the interaction be-
tween tree cover and living standards by adding an interaction ef-
fect. We did so by adding a tensor product smooth (“ti” function) to 

the main model setup. To assess the interaction effect separately 
for each ecoregion, we also included ecoregion as a parametric 
term and allowed the interaction (i.e. tensor product smooth) to 
vary for each ecoregion. Our model thus takes the form:

g(μi) = Xiβ + fm(Tm) + f1(x1) + · · · + fm(xm) + fgeo(lat, long)

+ fm(Tm, υm)Zm, 

where fm(Tm, υm) represents the interaction between tree cover Tm 

and living standards υm, and Zm is the ecoregion.
Finally, we used the DHARMa package (61) to calculate Moran’s 

I as an estimate of spatial autocorrelation. Although spatial auto-
correlation was still present in the residuals after including a 
smooth of the geographic location, Moran’s I was very low (0.01). 
We thus conclude that there is no evidence that spatial autocor-
relation influences our estimates.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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