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Abstract: One primary concern in the field of remote-sensing image processing is the precise classifi-
cation of hyperspectral images (HSIs). Lately, deep-learning models have demonstrated cutting-edge
results in HSI classification. Despite this, researchers continue to study and propose simpler, more
robust models. This study presents a novel deep-learning approach, the iterative convolutional
neural network (ICNN), which combines spectral–fractal features and classifier probability maps
iteratively, aiming to enhance the HSI classification accuracy. Experiments are conducted to prove
the accuracy enhancement of the proposed method using HSI benchmark datasets of Indian pine
(IP) and the University of Pavia (PU) to evaluate the performance of the proposed technique. The
final results show that the proposed approach reaches overall accuracies of 99.16% and 95.5% on
the IP and PU datasets, respectively, which are better than some basic methods. Additionally, the
end findings demonstrate that greater accuracy levels might be achieved using a primary CNN
network that employs the iteration loop than with certain current state-of-the-art spatial–spectral HSI
classification techniques.

Keywords: iterative convolutional neural network; fractal features; hyperspectral image; spatial–
spectral features

1. Introduction

Hyperspectral imaging is a powerful tool for studying surface phenomena because
hyperspectral sensors record hundreds of spectral bands that correspond to the compo-
nents that make up the Earth’s surface. Hyperspectral image (HSI) classification aims to
categorize similar materials and objects, traditionally using conventional classifiers like
random forests and support vector machines (SVMs) [1,2]. However, due to the complex
spectral behaviors of materials, these approaches based on spectral features often produce
noisy results [3].

To enhance HSI classification, the spatial/textural information of pixels can be incor-
porated [4]. Various spatial features, including Gabor textural features, morphological
profiles, attribute profiles, superpixels, and local binary patterns, have been widely used
for this purpose [3,5,6]. Fractal features (FFs) represent a robust textural measure exten-
sively employed in various image-processing applications [7,8]. Despite their considerable
potential, FFs have yet to be thoroughly explored for remote-sensing HSI classification.

Deep-learning methods, in particular the convolutional neural network (CNN), have
attracted a lot of attention recently. In addition to conventional handcrafted spectral and
spatial features, a CNN can consider spatial and spectral information simultaneously, prov-
ing its effectiveness in HSI classification [9,10]. Additionally, certain studies have shown
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improved CNN performance by incorporating handcrafted spatial features alongside spec-
tral features as inputs [11]. These advancements highlight the critical role of integrating
multiple types of information to enhance the classification accuracy and robustness.

Despite the existing body of research on the subject, there remains a need for simpler
and more robust deep-learning approaches in HSI classification. To address this, our
study aims to propose a novel deep-learning method named spectral–fractal iterative
CNN (SF-ICNN) that leverages spectral and spatial information at different stages of the
classification process. Our motivation arises from the demonstrated benefits of using
spectral features along with two kinds of spatial information—one from FFs and the other
from probability map (PM) images—in an iterative manner to enhance the performance
of CNN classifiers. We hypothesize that CNNs can significantly improve performance by
repeatedly utilizing PMs [12]. The key novelty of our proposed method lies in integrating
these two types of spatial features (FFs and PMs), resulting in remarkable performance
improvements in CNN-based HSI classification. The following are the suggested method’s
primary contributions:

• The method combines FFs with spectral features as inputs to a CNN classifier. Experi-
ments indicate that this novel strategy significantly enhances the classifier’s perfor-
mance.

• The method employs a novel combination of two types of spatial features, one from
FFs and the other from PMs, iteratively to improve the CNN performance. This
strategy enhances the classifier’s performance statistically.

• Based on two benchmark HSI datasets, our experiment shows that the suggested deep-
learning technique, with its more straightforward structure, outperforms certain state-
of-the-art (SOTA) methods in terms of the classification accuracy within a reasonable
processing time.

Section 2 of our study includes a review of recent research pertinent to the topics we
are studying. Section 3 consists of a detailed explanation of our proposed method for HSI
classification. In Section 4, the HSI datasets that we used are introduced, and then the
results of the experimental tests and comparisons are analyzed. Section 5 includes our
concluding remarks.

2. Literature Survey

Recent work has thoroughly examined the integration of spatial information for
HSI categorization. Prior to classification, one popular method is to generate different
spatial feature vectors. Rich spatial–spectral feature vectors, which are then fed into
classifiers like SVM, are created by stacking these spatial feature vectors with spectral
feature vectors. Based on past knowledge and research goals, users choose the kind of
spatial feature generation method and its parameters. Some important spatial features
include morphological profiles and their related topics [13–15], Gabor filters [16,17], local
binary patterns [18,19], and superpixels [19]. Post-processing is another strategy to enhance
HSI classification by incorporating spatial information after classification. For instance,
Cao et al. and Tan et al. employed Markov random fields as a post-processing technique
to improve the classification performance [20–22]. Kang et al. proposed a novel post-
processing technique based on edge-preserving filters (EPFs), in that an EPF is applied
to classified images to incorporate spatial features and reduce noise [23]. Zhong et al.
developed a strategy combining spatial information from probability maps derived from
SVM classifiers with EPFs iteratively to enhance the classification performance [24,25]. In
addition to the mentioned methods that consider the spatial information in the pre-process
or post-processing of the classification procedure, some recent classification approaches
integrate spatial information innovatively during the classification process. In order to
properly exploit spatial–spectral information, Jiang et al., for instance, developed a spatially
aware collaborative representation approach that directly includes spatial information
through a spatial regularization term in the representation objective function [26]. Wang
et al. offered a unique low-rank representation model that is regularized by both locality
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and structure [27]. It incorporates a new distance metric that combines spectral and spatial
characteristics and a structure constraint to increase the classification accuracy. Zhou et al.
provided a brand-new spatial peak-aware collaborative representation technique for HSI
classification that uses superpixel clusters’ spectral–spatial data to input regularization
terms for a brand-new closed-form solution [28].

Deep learning has attracted much interest in HSI analysis, in addition to conventional
techniques, because of its innate capacity to take spatial pixel properties into account
during categorization. Several deep-learning strategies have been put forth to improve
the HSI classification accuracy using CNNs [29,30]. For example, ensemble deep-learning
methods utilize local covariance descriptors from different window sizes around each
pixel as inputs to a CNN classifier [31]. Another method proposed a new deep feature
extraction method, named a random patches network, to extract deep features, and then
the SVM classifier was fed with shallow and deep features to classify HSI [32]. For few-shot
learning tasks, a multidimensional CNN model with convolution operators and an attention
mechanism has also been utilized [33]. For HSI classification, a novel deep-learning model
based on bidirectional long short-term memory (LSTM) and 3D convolutions has been
presented [34]. To enhance the CNN performance, a hybrid deep-learning technique known
as an attention-fused hybrid network combines an attention mechanism with a 3D and 2D
CNN inception net [35]. Another approach involves first extracting spatial and spectral
features and then using them as input to a CNN classifier [36]. A ghost module-based
spectral network utilizing Ghost3D and Ghost2D modules, along with non-local operations,
achieves superior performance in HSI classification [37]. A multi-feature fusion algorithm
combines 3DCNN and a graph attention network to enhance the classification accuracy in
HSI [38]. Finally, a neural network combines 3D CNN, 2D CNN, and Bi-LSTM to jointly
learn spatial–spectral features, reduce parameters, and achieve superior performance in
HSI classification [39].

This literature review shows that both traditional methods incorporating spatial
features (either pre-processing or post-processing) and CNNs, which inherently consider
spatial features, have been successfully utilized in HSI classification. Unlike traditional HSI
methods that rely solely on spectral features, often leading to noisy results, or conventional
deep-learning models that may not efficiently balance complexity and performance, this
proposed innovative method of integrating spectral–fractal features and iteratively refining
the CNN classification using PMs is unique and has not been explored in previous studies.
In other words, this study leverages the capabilities of CNNs along with textural FFs
and PMs for HSI classification—a combination not previously explored in the literature.
Unlike the iterative SVM approach proposed by Zhong et al. [25], our spectral–fractal
ICNN presents a more flexible and powerful framework for incorporating spatial and
spectral information in HSI classification. Through two real HSI datasets, we show that
our proposed technique achieves superior performance not only over [25] but also over
numerous other state-of-the-art HSI classification methods.

3. Methodology

We initially present our SF-ICNN technique in this section. Subsequently, the principal
elements of our suggested approach—PCA dimension reduction, fractal-based spatial
features, and CNN—are presented in the following three subsections.

The suggested method’s flowchart is displayed in Figure 1. The phases of this strategy
are as follows:

1. The HSI’s dimensionality is reduced in the first stage using the well-known prin-
cipal components analysis (PCA) method. This method efficiently eliminates data
redundancy and extracts compact, informative 3D data cubes.

2. The first three PCA characteristics are used to create FFs in the second stage.
3. The PCA approach is then used to reduce the fractal data cube’s dimensions.
4. In the fourth step, the reduced fractal and spectral PCA features with five dimensions

are stacked to create a combined 10-band spatio-spectral data cube. This number of
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bands is empirically chosen as input to balance speed and accuracy. The important
aspect is that the 10-band input with spectral and fractal features is a compact and
information-rich representation that is used as input to the CNN.

5. This dense and rich spectral–fractal data cube is fed to a CNN with a simple structure,
and primitive PMs are generated. The generated PMs have dimensions equal to
the number of classes. The accuracy of the classification process is increased by the
two-step use of spatial information resulting from the FFs and PMs.

6. The PMs are then stacked onto the combined data cube of spectral and fractal features.
This new data cube is then used again as input for the CNN to create new PMs.

7. Step 6 is repeated until it reaches the desired results. It is worth noting that in each
step of the iterative process, old PMs are replaced by new PMs. Also, the best iteration
number is determined based on the classification accuracy of the validation samples.
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3.1. PCA Dimensionality Reduction

Finding a lower-dimensional representation of the original data while maintaining the
greatest variance is the goal of PCA’s popular linear dimensionality reduction approach [40].
The fundamental principle of PCA is finding the best transformation matrix W* to project
the original feature space X (spectral or fractal characteristics) onto a lower-dimensional
subspace. The PCA transformation matrix W* may be calculated mathematically by work-
ing through the following formula:

W* = argmax WTW=I Tr
(

WT Cov (X) W
)

(1)

where:

• Tr stands for the trace operation, which is the sum of a matrix’s diagonal members.
• Cov (X) is a representation of the original data X’s covariance matrix.

The objective function in Equation (1) seeks to find the transformation matrix W* that
maximizes the trace of the transformed covariance matrix WT Cov (X) W. Accordingly, PCA
aims to identify the directions in the original feature space that maximize the variance of
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the data. The main components, or the orthogonal directions in the original feature space
that account for the most variation in the data, are found via PCA by solving this equation.
Applications for the transformed data in the lower-dimensional subspace produced by
PCA include feature extraction, dimensionality reduction, and data visualization.

3.2. Fractal Features

There are different methods to quantify the fractal textural measure of images. One
notable method is the Pentland method, which is a directional method known for its
excellent performance in generating spatial features for remote-sensing images [41]. This
approach considers the spectral fluctuations in the region around each pixel to extract FFs.
The self-similarity parameter (H) is calculated as the difference in the gray level between
two pixels at a distance r, represented by Er, and a constant value, represented as E0 [42]:

Er r−H = E0 (2)

The following formula is then used to obtain the fractal dimension (FD):

FD = 1 − H (3)

The following is what we obtain when we take the logarithm of Equation (2) on
both sides:

log(Er) − H log(r) = C0 (4)

Fitting a linear regression line between log(Er) and log(r) yields the values of H and
C0, where H is the slope and C0 is the intercept. Applying the Pentland technique involves
enclosing each pixel in a moving window of size L × L. Then, a random variable r, repre-
senting the difference between two random variables, a and b, is chosen within the range of
(0, L), meeting the constraint 0 < a < b ≤ L. The parameter er is then calculated as follows:

er =
|Sb − Sa|

r
+ 1 (5)

In this equation, the gray values of pixels at distances r and in the presumptive
direction are represented by Sb and Sa. The average of the parameter er can be computed as
follows, given the positive integer a:

er =
∑L−r

a=0 er

L − r + 1
(6)

Er is then given as:

Er = er
L
r

(7)

The Pentland method considers four directions (vertical, horizontal, and two diag-
onals) to capture the spatial properties of pixels. This method produces distinct values
for H and C0 in every direction, providing exact information on the textures of pixels. In
this study, FFs are generated using window sizes of 9 × 9, 17 × 17, and 25 × 25 to capture
multiscale spatial information. We can enhance our understanding of image textures by
employing this method with diverse orientations and window sizes.

3.3. CNN

CNNs are models inspired by the human visual system, making them highly effective
for image-processing tasks. These deep-learning models are particularly adept at extracting
complex features from HSI because they use spatial kernels. The weight-sharing technique
of CNNs is a significant benefit as it drastically lowers the number of parameters and
increases the computing efficiency. Convolutional layers, activation functions, pooling
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layers, and fully connected layers are the common layer types seen in a CNN design
(Figure 2) [36].
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Convolutional layers work by moving a small filter across the input image, calculating
the dot product between the filter and each image patch to detect specific features such
as edges or textures. This process produces feature maps, in which the image content
features are highlighted and enable the network to learn complex patterns. Multiple
convolutional layers are usually used to extract deeper features. Early layers consider basic
features such as edges and gradient information, while deeper layers detect more abstract
features. By adding non-linearity, activation functions enable the network to simulate
intricate connections found in the data. Tanh, sigmoid, and ReLU (rectified linear unit)
are examples of standard activation functions. Pooling layers downsample the feature
maps, reducing their size and complexity, which improves the network’s efficiency and
robustness to minor input variations. Standard pooling methods include max pooling,
which selects the maximum value within a region, and average pooling, which computes
the average value. These layers are exceptionally well suited for HSI classification since
they generate position- and rotation-invariant characteristics. Typically, convolutional
layers are followed by activation and pooling layers. Following a number of these layers,
the obtained spectral–spatial information is combined into a 1-D vector by a fully connected
layer, which is subsequently input into a softmax function.

The unknown parameters of a CNN, represented by the convolutional kernel values,
are determined through training [43]. During the forward propagation phase, random
weights are assigned to the kernels, which are convolved with the inputs and passed
through the activation functions before reaching the pooling layer. By employing average
or maximum operators, the pooling layer shrinks the feature maps’ size. The final layer
transforms the output into a deep feature vector, which is then processed by a fully con-
nected layer to determine the pixel labels. The weight of the convolution kernel is modified
in the backpropagation stage to minimize the loss performance. Batch normalization (BN)
is also used to increase the accuracy and speed up network learning [44].

4. Datasets and Experimental Results
4.1. Datasets

Our study employed two widely recognized his datasets: Indian Pines (IP) and Pavia
University (PU).

(1) The AVIRIS hyperspectral sensor gathered the IP dataset used in this study. This
dataset includes 220 spectral bands covering the wavelength range of 0.4 to 2.5 µm,
organized in 145 by 145 pixels with a spatial resolution of 20 m. A total of 200 bands
remained for examination after 20 bands (104–108, 150–163, and 220) displaying water
absorption and noise were eliminated to improve the data quality. A ground truth (GT)
image and a color composite image created using this dataset are shown in Figure 3.
According to Table 1, 10% of the labeled samples of each class are used to train the
network, while the remaining data are used to evaluate the model performance.



Appl. Sci. 2024, 14, 7361 7 of 15

Table 1. Sample count specification for the IP his dataset.

Class Total Samples Train/Validation Test

1 46 4 42
2 1428 142 1286
3 830 83 747
4 237 23 214
5 483 48 435
6 730 73 657
7 28 3 25
8 478 47 431
9 20 3 17
10 972 97 875
11 2455 245 2210
12 593 59 534
13 205 20 185
14 1265 126 1139
15 386 38 348
16 93 9 84

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 
Figure 3. The IP dataset. 

Table 1. Sample count specification for the IP his dataset. 

Class Total Samples Train/Validation Test 
1 46 4 42 
2 1428 142 1286 
3 830 83 747 
4 237 23 214 
5 483 48 435 
6 730 73 657 
7 28 3 25 
8 478 47 431 
9 20 3 17 

10 972 97 875 
11 2455 245 2210 
12 593 59 534 
13 205 20 185 
14 1265 126 1139 
15 386 38 348 
16 93 9 84 

(2) The PU dataset was collected by the airborne hyperspectral sensor ROSIS-03 from the 
University of Pavia campus in Italy. This dataset has 103 spectral bands and 610 × 340 
pixels with a spatial resolution of 1.3 m. The GT for this scene includes the nine dis-
tinct urban classes. Figure 4 shows a color composite of the HSI and the GT corre-
sponding to the PU dataset. Following the specifications in Table 2, 1% of the labeled 
samples from each class were utilized for training, while the remainder samples were 
used to evaluate the model performance. 

Figure 3. The IP dataset.

(2) The PU dataset was collected by the airborne hyperspectral sensor ROSIS-03 from
the University of Pavia campus in Italy. This dataset has 103 spectral bands and
610 × 340 pixels with a spatial resolution of 1.3 m. The GT for this scene includes
the nine distinct urban classes. Figure 4 shows a color composite of the HSI and the
GT corresponding to the PU dataset. Following the specifications in Table 2, 1% of
the labeled samples from each class were utilized for training, while the remainder
samples were used to evaluate the model performance.

Table 2. Sample count specification for the PU his dataset.

Class Total Samples Train/Validation Test

1 6631 66 6565
2 18,649 186 18,463
3 2099 20 2079
4 3064 30 3034
5 1345 13 1332
6 5029 50 4979
7 1330 13 1317
8 3682 36 3646
9 947 9 938
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4.2. Analysis of the Results

The accuracy assessment in this study includes the use of two main classification
indices [45], overall accuracy (OA) and kappa coefficient, both obtained from the con-
fusion matrix, along with class-wise classification accuracy. These measures provide a
comprehensive evaluation of the classifier’s performance.

In order to strike a balance between accuracy and processing time, a 9 × 9 window
size was chosen as the input patch size around each pixel for the CNN classifier. In our
proposed SF-ICNN, we employed a simple CNN architecture with two main layers. In the
first layer, 3 × 3 convolutional filters are used to generate 32 feature maps, followed by BN
and ReLu activation and a 3 × 3 pooling layer. In the second layer, 3 × 3 convolutional
filters are again used to generate 16 feature maps, followed by BN and ReLu activation
and a 3 × 3 pooling layer. Finally, we employ a single layer of fully connected neurons,
succeeded by a SoftMax function, to ascertain the labels of individual pixels. We also use
ADAM as the optimizer, with the maximum number of epochs equal to 50. All the tests are
performed with MATLAB 2020b on a fourth-generation Core i5 3.3 GHz CPU and 8 GB
RAM, with the other CNN parameters set to their default values in MATLAB 2020b.

The effectiveness of the suggested approach is demonstrated by comparing the SF-
ICNN method with a few baseline techniques in the following portion of this section.
The next two subsections examine the effects of the training sample ratio and number of
iterations on the classification outcomes of the suggested SF-ICNN. In the last part, we
compare the performance of the suggested SF-ICNN with several SOTA techniques.

4.3. Comparison to Baselines

In this subsection, we compare our proposed SF-ICNN strategy with several baseline
techniques, including spectral SVM (S-SVM), spectral–fractal SVM (SF-SVM), conven-
tional spectral CNN (S-CNN), and conventional spectral–fractal CNN (SF-CNN). More
information about these methods is as follows:

• S-SVM: In this method, spectral features are classified using kernel SVM, a commonly
employed classifier in the literature.

• SF-SVM: In this method, stacked spectral–fractal features are classified using ker-
nel SVM.

• S-CNN: In this method, spectral features are classified using the conventional CNN
approach without iteration loops.



Appl. Sci. 2024, 14, 7361 9 of 15

• SF-CNN: In this method, stacked spectral–fractal features are classified using the
conventional CNN approach without iteration loops.

The classification accuracies of each method on the test samples are presented in
Tables 3 and 4 for each dataset. The important findings of these tables are as follows:

• Comparing the OA and kappa of S-SVM and SF-SVM demonstrates that adding spatial
FFs to spectral-based SVM can significantly improve the classification accuracy. This
confirms the findings of previous studies about the efficacy of spatial features in
enhancing the HSI classification outcomes.

• The results show that CNN-based methods outperform SVM-based methods in terms
of the classification performance. This is due to the CNN’s ability to consider spatial
features during the classification procedures. However, the conclusion about the
comparison of SF-SVM and S-CNN is mixed. In the IP dataset, SF-SVM performs
better than S-CNN, but in the PU dataset, S-CNN performs better than SF-SVM. This
may be because of the underlying complex land cover present in each scene.

• A comparison of the S-CNN and SF-CNN outcomes for the two datasets shows
that although the CNN can take into account the spatial properties of pixels, its
performance can still be enhanced by applying manually created FFs as inputs.

• Comparison of SF-ICNN and other techniques demonstrates that our proposed strat-
egy outperforms all the baselines. Also, the results show that the proposed itera-
tive strategy is efficient since SF-ICNN reaches higher classification accuracies than
SF-CNN.

• The best baseline approach, SF-CNN, is compared with the suggested SF-ICNN
method using the Z-score test [46]. The Z-score is a statistical measure used to com-
pare the performance of two classification methods from a statistical point of view.
The Z-score values between the SF-CNN approach (the best baseline method) and
the SF-ICNN approach exceeded 1.96 for both datasets (2.87 for IP and 2.95 for PU),
indicating significant accuracy improvements.

• In the context of class accuracies, the proposed SF-ICNN outperforms the other method
in 15 of 16 classes for the IP dataset and 6 of 9 classes for the PU dataset. This
further demonstrated the suggested method’s effectiveness in raising the classification
accuracy across the majority of classes.

• Figures 5 and 6 show the GT images and the final classification images of each clas-
sification method. As can be seen from the figures, our proposed SF-ICNN method
shows a significant reduction in misclassified pixels in the classified images compared
to the baseline methods.

Table 3. Results of the classification for the IP HSI dataset (the best results of each row are highlighted).

Class S-SVM SF-SVM S-CNN SF-CNN SF-ICNN

1 50% 69.04% 69.04% 83.33% 97.61%
2 20.52% 82.03% 81.88% 93.23% 98.83%
3 70.01% 93.57% 86.07% 96.51% 97.05%
4 45.79% 94.85% 70.09% 98.13% 99.06%
5 66.20% 89.42% 82.98% 88.50% 97.24%
6 90.86% 96.49% 97.10% 99.84% 99.84%
7 76.00% 92.00% 84.00% 88.00% 92.00%
8 97.67% 93.03% 100% 98.37% 100%
9 41.17% 82.35% 58.82% 76.47% 100%
10 40.80% 82.74% 91.20% 98.97% 100%
11 39.45% 80.49% 94.84% 97.91% 99.50%
12 31.64% 75.09% 73.22% 88.76% 99.62%
13 95.67% 96.75% 98.37% 97.83% 98.37%
14 66.81% 97.27% 97.98% 98.15% 99.73%
15 29.59% 97.41% 75.00% 100% 100%
16 86.90% 97.61% 83.33% 89.28% 96.42%

OA 51.46% 87.32% 89.39% 96.33% 99.16%
Kappa 0.459 0.852 0.878 0.958 0.99
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Table 4. Results of the classification for the PU HSI dataset (the best results of each row are high-
lighted).

Class S-SVM SF-SVM S-CNN SF-CNN SF-ICNN

1 79.25% 84.03% 90.37% 91.04% 90.96%
2 94.71% 97.83% 97.71% 98.87% 99.44%
3 65.94% 76.91% 67.58% 72.10% 81.14%
4 70.79% 97.82% 84.97% 93.83% 94.75%
5 99.32% 99.77% 96.77% 96.32% 100%
6 44.90% 88.17% 80.91% 96.22% 99.05%
7 71.22% 70.15% 62.33% 64.00% 82.30%
8 77.15% 85.32% 87.35% 95.69% 96.62%
9 99.89% 92.21% 75.26% 79.53% 72.81%

OA 81.35% 91.53% 89.69% 93.80% 95.50%
Kappa 0.745 0.887 0.861 0.917 0.943
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4.4. Analyzing the Impact of the Iteration Number

In this part, we look into how the number of iterations affected the SF-ICNN method’s
ultimate OA. By dividing the training samples, the accuracy results were acquired on
validation samples, which helped identify the ideal number of iterations for the SF-ICNN
approach. To accomplish this, we changed the number of iterations from zero, which means
“no iteration applied,” to six. Figure 7 reports the outcomes of the OA.
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As shown in Figure 7, the OA metric exhibited an initial increase as the number
of iterations reached five. However, the next iterations did not result in any further
improvement. Figure 7 shows that for both HSI datasets, the majority of the accuracy
improvement happens in the first few rounds. It is important to note that the computation
time increases by training more CNNs, resulting from more iteration loops. Therefore,
it may be recommended to use a smaller number of iteration loops in studies where the
computational time is critical.

4.5. Analyzing the Impact of the Training Sample Ratios

This section studies the sensitivity of the SF-ICNN technique to the number of training
samples (#training). To accomplish this, the CNN classifier is trained using a different
#training in the suggested SF-ICNN technique. The classification accuracy results for both
HSI datasets are shown in Figure 8. This figure shows that, as expected, the classification
accuracy of SF-ICNN increases with an increasing sample size. Furthermore, even with
limited #training, the suggested approach continues to function well.
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4.6. Comparison to SOTA Methods

In this section’s final experiment, we compare our proposed method to some previ-
ously introduced SOTA spatial–spectral HSI classification methods, namely Kang et al. [23],
Xu et al. [32], Wang et al. [27], Liu et al. [33], Praveen et al. [34], Ren et al. [37], Sa-
hoo et al. [39], and Zhong et al. [25]. The comparison experiment demonstrates the inno-
vative strength and key advantages of the proposed SF-ICNN method. The results are
shown in Table 5 and represent a fair comparison as each approach takes into account the
same percentage of training and testing data. This table shows that on both the IP and PU
datasets, the SF-ICNN methodology showed higher overall classification accuracies than
various current SOTA spatial–spectral HSI classification approaches.

Table 5. Comparison with some SOTA methods (the best results of each column are highlighted).

Methods
OA

IP PU

Kang et al. [23] * 91.33% 94.65%
Xu et al. [32] * 97.76% 94.21%

Wang et al. [27] ** 95.63% — ***
Liu et al. [33] ** — 92.23%

Praveen et al. [34] ** 94.07% —
Ren et al. [37] ** 98.75% 95.19%

Sahoo et al. [39] ** 98.62% —
Zhong et al. [25] ** 96.59% —

Proposed SF-ICNN * 99.16% 95.5%
* The result is reported based on the implementation, ** The original paper’s outcome is reported. *** The original
study does not report the outcome.

The main innovative point of the SF-ICNN method lies in its iterative integration of
spectral–fractal features and the CNN’s PMs. By using spatial information in different
stages of the classification, SF-ICNN can extract more discriminating features and refine
the classification results iteratively. This is a significant improvement over previous SOTA
methods, which only use spectral features, without considering the information contained
in the FFs and PMs resulting from the CNN for HSI classification.

In respect of the computational time, the proposed SF-ICNN offers a processing time of
around 100 s on the IP dataset, which may not be as fast as traditional non-deep approaches
such as [23] or [32], which need a few seconds, but still better than some other non-deep
approaches such as [27] by more than 300 s and deep-learning based techniques such as [34]
that need more than 900 s for HSI classification. Our computation times can be improved
by using advanced hardware such as GPU and parallel-processing techniques, improving
its performance for larger-scale HSI classification tasks.

The proposed SF-ICNN method combines fractal–spectral features and CNNs with
iterative loops to achieve high classification accuracy while maintaining computational
efficiency. These results show the innovative nature and advantages of the SF-ICNN method
and highlight its potential as a powerful and straightforward deep-learning framework for
HSI classification.

5. Conclusions

Our study introduces a new deep-learning approach for the classification of HSI. Our
proposed method combines spectral features and FFs as well as PMs in an iterative manner
in the CNN classifier, resulting in highly accurate classification images. We conducted
experiments using the IP and PU HSI datasets. We demonstrated that our SF-ICNN
strategy outperformed basic methods by about 18% and 6.4% on average for the IP and PU
datasets, respectively. The statistical analysis using the Z-score confirmed the statistical
significance of this improvement. Additionally, we compared our SF-ICNN approach with
some recently developed spatial and spectral classification methods and found that our
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method can achieve an acceptable processing time and superior classification accuracy.
The proposed SF-ICNN framework also has potential applications beyond hyperspectral
image classification. It can be used in various remote-sensing image analysis domains like
land-cover mapping, urban planning, change detection, and environmental monitoring,
where precise image classification is crucial. Even further, the proposed method can also be
adopted to improve the CNN performance in texture analysis tasks such as medical image
segmentation, anomaly detection, and face recognition. We intend to improve the SF-ICNN
approach by making it less sensitive to the sample size by adopting a more advanced base
model. Additionally, we aim to reduce the computational complexity by using advanced
hardware such as GPUs and techniques such as parallel processing that increase efficiency
while maintaining accuracy. These changes will enhance the performance and usability of
the method.
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