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Abstract
The seasonal coupling of plant and soil microbial nutrient demands is crucial for effi-
cient ecosystem nutrient cycling and plant production, especially in strongly seasonal 
alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified 
by climate change and what the consequences are for nutrient loss and retention 
in	alpine	ecosystems	remain	unclear.	Here,	we	explored	how	two	pervasive	climate	
change	factors,	 reduced	snow	cover	and	shrub	expansion,	 interactively	modify	 the	
seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, 
which	are	warming	at	double	the	rate	of	the	global	average.	We	found	that	the	com-
bination	of	reduced	snow	cover	and	shrub	expansion	disrupted	the	seasonal	coupling	
of plant and soil N- cycling, with pronounced effects in spring (shortly after snow melt) 
and autumn (at the onset of plant senescence). In combination, both climate change 
factors	decreased	plant	organic	N-	uptake	by	70%	and	82%,	 soil	microbial	 biomass	
N	by	19%	and	38%	and	increased	soil	denitrifier	abundances	by	253%	and	136%	in	
spring	and	autumn,	respectively.	Shrub	expansion	also	individually	modified	the	sea-
sonality of soil microbial community composition and stoichiometry towards more 
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1  |  INTRODUC TION

Ecological processes that regulate ecosystem nutrient cycling and 
plant	 production	 display	 marked	 temporal	 dynamics,	 especially	
in strongly seasonal ecosystems, such as alpine and arctic tundra 
(Bardgett et al., 2005).	However,	 how	 these	 ecological	 processes	
are modified by climate change and the consequences for eco-
system	 nutrient	 cycling	 and	 retention	 remain	 largely	 unknown	
(Bardgett et al., 2005;	Makoto	et	al.,	2014; Pugnaire et al., 2019). 
Addressing	this	knowledge	gap	is	particularly	pressing	in	alpine	eco-
systems because they display strong seasonality and are warming 
twice as fast as the global average (Pepin et al., 2015).	Moreover,	al-
pine ecosystems are generally nitrogen (N)- limited and rely on inti-
mate coupling of plant and microbial resource needs across seasons 
for N retention (Bardgett et al., 2002; Jaeger et al., 1999).

The cycling of labile N pools between plants and soil microbes 
across seasons is critical for N retention in alpine ecosystems 
(Bardgett et al., 2005). Plants have a higher demand for resources, 
including N, during the growing season, whereas their resource 
needs in the autumn during plant senescence and throughout winter 
are much lower (Jaeger et al., 1999).	Soil	microbes	therefore	expe-
rience reduced competition for N from plants during autumn and 
winter (Bardgett et al., 2002). Further, microbial growth is promoted 
by	large	fluxes	of	labile	C	from	senescing	plants	in	autumn,	leading	
to enhanced N immobilisation, along with decomposing plant litter 
throughout winter (Schmidt et al., 2007). Yet, how climate change af-
fects the seasonal dynamics of plant and soil N pools and processes 
remains poorly understood, despite the important implications for N 
retention in these globally widespread ecosystems.

Alpine	 ecosystems	 are	 experiencing	numerous	direct	 and	 in-
direct climate change impacts, which include huge reductions 
in snow cover and widespread shifts in vegetation, respectively 
(Beniston et al., 2018;	He	et	al.,	2023). Reduced snow cover and 
shifts in vegetation are among the most pronounced and glob-
ally widespread signals of climate change in alpine ecosystems 
(Gobiet	et	al.,	2014;	Kellner	et	al.,	2023; Notarnicola, 2020; Pepin 
et al., 2022; Steinbauer et al., 2018;	Zong	et	 al.,	2022), yet how 
they	interactively	modify	key	nutrient	cycles	is	poorly	understood	
(Classen	et	al.,	2015), with the vast majority of studies focussing 

on single global change factors (Rillig et al., 2019). Interactive ef-
fects of global change factors can be additive or non- additive. 
Additive	effects,	which	are	the	sum	of	individual	effects,	are	rela-
tively easy to predict and model based on individual effects alone 
(Song et al., 2019). In contrast, non- additive effects, which can be 
synergistic or antagonistic, are inherently unpredictable and can 
profoundly	 affect	C-	cycling	 (Reich	 et	 al.,	2020).	How	direct	 and	
indirect consequences of climate change interact to modify the 
seasonal	 N-	cycle	 in	 alpine	 ecosystems	 is	 unknown,	 despite	 the	
potential	for	non-	additive	interactions	to	markedly	alter	annual	N	
fluxes	and	ecosystem	productivity.

Tight temporal coupling between plant and soil N- cycle pro-
cesses across seasons in alpine grasslands can be disrupted by 
changes in snow depth due to climate change (Jia et al., 2022). 
Winter	 snow	 cover	 is	 predicted	 to	 decrease	 by	 80%–90%	 at	
1500 m,	and	snow	melt	to	occur	5–10 weeks	earlier,	by	the	end	of	
the	century	 in	the	European	Alps	 (Beniston	et	al.,	2018). This will 
lead	to	increased	freeze–thaw	cycles,	resulting	in	damage	to	plants	
(Bokhorst	et	al.,	2009), along with a release of N from soil microbi-
ota	 (Gao	et	al.,	2021; Song et al., 2017). Spring snow melt causes 
abrupt	shifts	in	soil	microbial	communities,	which	are	closely	linked	
to	 rapid	 fluxes	 in	 key	 plant	 growth-	limiting	 nutrients	 (Broadbent	
et al., 2021). Earlier snow melt due to climate change will advance 
the timing of these below- ground transitions in biotic and abiotic 
soil properties, which are crucial for soil N- availability at the start of 
the growing season (Broadbent et al., 2021). Earlier snow melt could 
therefore cause a mismatch between soil N- availability and plant 
N demand (Bilbrough et al., 2000). This temporal mismatch, cou-
pled	with	damage	to	plants	due	to	freeze–thaw	cycles,	could	lead	to	
reduced	plant	N-	uptake	across	the	growing	season,	with	negative	
consequences for plant productivity and ecosystem N retention 
(Bardgett et al., 2005;	Ernakovich	et	al.,	2014).

Climate	change	is	causing	widespread	ericaceous	shrub	expan-
sion into alpine grassland, which is co- occurring with reductions 
in winter snow cover, leading to the potential for interactive ef-
fects (Broadbent et al., 2022). It is unclear how ericaceous shrub 
expansion	moderates	 the	 effects	 of	 reduced	 snow	 cover	 on	 the	
temporal	 coupling	of	 plant	 and	 soil	N-	cycling.	However,	 ericace-
ous dwarf shrubs are very susceptible to frost damage caused by 

N- limited conditions and slower nutrient cycling in spring and autumn. In winter, snow 
removal	markedly	reduced	the	fungal:bacterial	biomass	ratio,	soil	N	pools	and	shifted	
bacterial	community	composition.	Taken	together,	our	findings	suggest	that	interac-
tions between climate change factors can disrupt the temporal coupling of plant and 
soil microbial N- cycling processes in alpine grasslands. This could diminish the ca-
pacity of these globally widespread alpine ecosystems to retain N and support plant 
productivity under future climate change.

K E Y W O R D S
alpine	ecosystems,	climate	change,	nutrient	cycling,	plant–soil	interactions,	seasonality,	shrub	
expansion,	snow	cover
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a	lack	of	snow	cover	in	winter,	or	earlier	spring	snow	melt	(Bjerke	
et al., 2017; Parmentier et al., 2018;	Wheeler	et	al.,	2014).	Given	
the vulnerability of ericaceous shrubs to frost damage, they may 
experience	 large	 reductions	 in	N-	uptake	 in	 response	 to	 reduced	
snow cover and earlier snow melt. Substantial reductions in plant 
N-	uptake	would	disrupt	the	temporal	coupling	between	plant	and	
soil	N-	cycling,	given	that	plant	N-	uptake	is	a	key	seasonal	transfer	
of N from soil to plants. This could, in turn, lead to ecosystem N 
losses via leaching or denitrification.

Here,	we	used	a	manipulative	field	experiment	in	the	European	
Alps,	 combined	 with	 in	 situ	 15N and 13C	 labelling,	 to	 character-
ise the temporal coupling of plant and microbial resource needs, 
and how this relates to soil microbial community composition and 
functioning.	 We	 then	 tested	 how	 this	 temporal	 coupling	 is	 af-
fected by interactions between two pervasive direct and indirect 
climate	change	impacts,	namely	reduced	snow	cover	and	shrub	ex-
pansion, respectively. Specifically, we tested the hypothesis that 
reduced	snow	cover	and	ericaceous	shrub	expansion	interactively	
disrupt seasonal N- cycle dynamics via negative additive effects 
on	plant	N-	uptake,	soil	N-	availability,	microbial	 functions	related	
to N- cycling and by shifting microbial community composition to-
wards	oligotrophic	 taxa,	which	are	associated	with	reduced	eco-
system N retention.

2  |  METHODS

2.1  |  Experimental design

To test our hypothesis, we established a snow manipulation and 
shrub	expansion	experiment	in	a	Nardus stricta (L.)- dominated alpine 
grassland	in	the	Oetztal	Alps,	Tyrol,	Austria,	near	Vent	(mean	eleva-
tion = 2472	 (± 1)	 m;	 lat.,	 long. = 46.863217,	 10.896800),	 in	 August	
2017.	The	experiment	consisted	of	32	plots	(2 m × 2 m),	which	were	
subjected to a full factorial cross of two snow manipulation treat-
ments (snow removal and snow control) across two vegetation types 
(shrub	 invaded	and	grass	control),	 arranged	 in	a	 randomised	block	
design	across	eight	blocks	(n = 8).

Snow was manually removed from the entirety of the 16 plots in 
the	snow	removal	treatment	three	times	(February	and	April	2018,	
and	February	2019)	 to	 a	 depth	of	 ca.	 5 cm	 above	 the	 ground	 sur-
face. Soil temperature and moisture were measured using iButtons 
installed	 in	 all	 plots,	 and	Hobo	 temperature	 and	moisture	 loggers	
(Onset	Computer	Corporation,	Bourne,	MA,	USA)	installed	in	a	sub-
set	of	18	plots,	in	order	to	assess	the	extent	of	freeze–thaw	cycles	
in soil following snow removal (Figure S1). Snow removal caused 
increased	 freeze–thaw	 activity	 in	 soil,	 and	 significantly	 advanced	
snow	melt	 timing	 by	 11 days	 on	 average	 in	 both	 vegetation	 types	
(χ2 = 90.8,	p < .01,	Figure S1).	Mean	 snow	cover	was	13%	 lower	 in	
the	shrub-	invaded	plots	(102 ± 2 cm	[mean ± SE])	than	the	grass	plots	
(117 ± 2;	χ2 = 6.2,	df = 1,	p < .05),	and	soil	temperature	and	moisture	
tended to be lower in shrub plots (Figure S1).

Native ericaceous shrub abundance increased at the site between 
2003	and	2015,	 including	upward	shifts	 in	elevation	most	 likely	 in	
response	to	climate	change	(Kaufmann	et	al.,	2021) (Figure S2), with 
local landowners observing increases in shrub abundance for the 
last	 50 years	 (Markus	 Pirpamer,	 personal	 communication).	 Calluna 
vulgaris (L.) is the dominant shrub species at the site and accounts 
for the majority of this increase in shrub abundance, along with 
various Vaccinium spp. (L.), albeit to a lesser degree. Plant commu-
nity composition was dominated by C. vulgaris in shrub- invaded 
plots and N. stricta in grass control plots (Figure S3). The soil at 
the	site	 is	 a	 shallow	 (depth	ca.	10–30 cm)	haplic	podzol	 (European	
Commission,	2005),	with	a	mean	soil	pH	of	5.1	and	a	mean	C:N	ratio	
of 16.9. The aspect of plots is south or south- east; for further site 
details, see (Broadbent et al., 2022).

2.2  |  Soil sampling

To capture seasonal dynamics across the site, soil was sampled 
on	four	key	seasonal	timepoints	in	alpine	ecosystems.	(1)	Shortly	
after	snow	melt	(23	May	2018),	which	captures	the	onset	of	plant	
growth. This is also a time when alpine plants acquire a substantial 
proportion of their annual N demand (Bilbrough et al., 2000). (2) 
Peak	plant	growth	(20	July	2018),	which	is	a	period	of	high	micro-
bial	turnover	and	C-	sequestration	by	plants	(Bardgett	et	al.,	2005; 
Schmidt et al., 2007). (3) Onset of plant senescence (14 September 
2018),	when	 senescing	 plants	 provide	 a	 pulse	 of	 labile	 C	 to	 the	
soil, promoting microbial growth and N immobilisation (Bardgett 
et al., 2005).	 (4)	Mid-	snow	 season	 (7	February	2019),	 coinciding	
with high soil microbial biomass and N immobilisation, attributed 
to the consumption of dead organic matter under the snow in 
winter (Schmidt et al., 2007). These timepoints also correspond 
to	 the	 four	 seasons	 experienced	 by	 alpine	 ecosystems,	 that	 is	
spring, summer, autumn and winter, respectively, and we refer to 
these timepoints by their seasonal names throughout the manu-
script. The winter timepoint immediately followed snow removal 
(Figure S1), and was therefore analysed separately from the other 
timepoints to assess the direct effects of snow removal and as-
sociated	freeze–thaw	cycles	in	winter.

Soil	 cores	 (diameter = 2 cm,	 depth = 10 cm)	 were	 taken	 using	
a steel corer from five random locations in each plot. To sample 
under snow in snow- control plots without disturbing snow cover 
in	winter,	 we	 used	 an	 extended	 (2 m)	 soil	 corer.	 Soil	 cores	 from	
the same plot were pooled and homogenised, and any vegeta-
tion or litter was separated and discarded from the samples. Five 
subsamples	 were	 immediately	 taken	 from	 each	 soil	 sample	 (ap-
prox.	200 mg)	 for	molecular	 analysis;	 see	SI	methods	 for	 further	
details. Sampling equipment was sterilised between plots using 
ethanol	 (96%).	 The	 remaining	 soil	 samples	 were	 sieved	 (4 mm),	
stored	 at	 4°C	 for	 up	 to	 2 weeks	 and	 shipped	 to	Manchester	 for	
analysis.	 Vegetation	 surveys	 were	 conducted	 over	 2 weeks	 in	
August	2018	by	visually	estimating	plant	species	relative	cover	(%)	
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to	 the	 nearest	 1%	within	 a	 60 × 60 cm	 subplot	 using	 a	modified	
Daubenmire method (Daubenmire, 1959).

2.3  |  Plant N- uptake

To	test	how	reductions	in	snow	cover	and	shrub	expansion	affected	
plant	N-	uptake,	we	used	in	situ	15N and 13C	labelling	on	a	subset	of	
20 plots (replicate n = 5).	Nine	20 × 20 cm	subplots	were	randomly	
marked	out	 in	each	plot.	One	day	before	 the	spring,	 summer	and	
autumn	sampling	timepoints	(i.e.	on	22	May	2018,	19	July	2018	and	
13 September 2018), three of the subplots were randomly allocated 
a	50-	mL	solution	containing	2.304 mg	15N as either inorganic N or 
organic N, or an unlabelled control solution. The three solutions 
contained the following compounds dissolved in DI water: solu-
tion (1) 15N-	labelled	inorganic	N	(126.00 mg L−1	15NH4

15NO3, 98+%	
enriched;)	with	 unlabelled	 organic	N	 (247.09 mg L−1 glycine); solu-
tion	 (2)	 unlabelled	 inorganic	 N	 (131.72 mg L−1 ammonium nitrate) 
with dual 13C-	15N	 labelled	 organic	N	 (236.70 mg L−1 glycine- 2- 13C-	
15N,	99%	enriched);	and	solution	(3)	control	solution	of	unlabelled	
inorganic	 and	 organic	 N	 (131.72 mg L−1 ammonium nitrate with 
247.09 mg L−1 glycine), which was used for natural abundance meas-
urements of 13C	and	15N.

Subplots	 were	 sampled	 once	 after	 24 h	 to	 determine	 short-	
term	 plant	N-	uptake	 (i.e.	 on	 23	May	 2018,	 20	 July	 2018	 and	 14	
September	2018),	 and	once	after	38 days	 to	determine	 long-	term	
plant	N-	uptake	(on	29	June	2018,	26	August	2018	and	21	October	
2018),	by	taking	a	core	of	intact	vegetation	and	soil	(diameter = 8 cm,	
depth = ca.	 10 cm)	 from	 the	 centre	 of	 each	 subplot.	 Immediately	
after sampling, cores were cooled, transported to the University of 
Innsbruck	(Austria)	and	separated	into	root	and	shoot	components.	
Plant	roots	were	washed	in	a	0.5 M	CaCl2 solution to remove any of 
the	isotopic	label	attached	externally	(Wilkinson	et	al.,	2015). The 
plant	material	was	dried	for	48 h	at	65°C	before	being	weighed	and	
pulverised.	A	subsample	was	subsequently	analysed	for	%C	and	N	
and 13C	and	15N content. Total N content in shoots and roots was 
calculated	using	%N	and	total	biomass	values.	Stable	isotope	mea-
surements	of	C	 (δ13C)	and	N	 (δ15N)	were	conducted	at	 the	NERC	
National	Environmental	Isotope	Facility	(NEIF)	at	the	UK	Centre	for	
Ecology	and	Hydrology	in	Lancaster,	UK.

The	 concentration	 of	 excess	 15N and 13C	 above	 natural	 abun-
dance values (μg	excess	15N	[or	13C]	g−1) was calculated separately 
for each component (shoots and roots) using 15N or 13C	atom	percent	
excess	and	N	or	C	concentrations,	respectively	(Bardgett	et	al.,	2003; 
McKane	et	al.,	2002).	Atom	percent	excess	was	calculated	from	δ15N 
or δ13C	values,	as	described	in	(Wilkinson	et	al.,	2015). To account 
for	isotope	dilution,	concentrations	of	excess	15N were scaled by the 
size	of	the	target	N	pool	estimated	to	be	available	within	each	core	
at the time of injection (Bardgett et al., 2003;	McKane	et	al.,	2002); 
see	SI	methods	for	further	details.	Scaled	concentrations	of	excess	
15N	 in	 shoots	 and	 total	 shoot	mass	 (g m−2) were used to calculate 
total	shoot	N-	uptake	(mg N m−2)	(McKane	et	al.,	2002), whereas con-
centrations	of	excess	15N were used to assess root N acquisition. To 

determine	whether	organic	N	was	taken	up	directly	by	plants,	rather	
than as inorganic N after mineralisation, we compared μg	 excess	
13C	g−1 with μg	excess	15N g−1. 13C	enrichment	in	plant	tissues	and	a	
positive	relationship	 implied	direct	organic	N-	uptake	had	occurred	
(Bardgett et al., 2003) (Figure S4).

2.4  |  Soil biogeochemical pools

To	 measure	 plant-	available	 inorganic	 N,	 5 g	 (fresh	 weight)	 of	 soil	
was	extracted	with	25 mL	of	1 M	KCl	and	then	analysed	on	a	Seal	
AA3	Segmented	Flow	Multi-	chemistry	analyser	(Mequon,	WI,	USA).	
Dissolved	 (water-	extractable)	 organic	 carbon	 (DOC)	 and	 nitrogen	
(DON)	were	 determined	 by	 extracting	 5 g	 (fresh	weight)	 of	 soil	 in	
35 mL	ultrapure	 (Milli-	Q®)	H2O	and	analysed	using	 a	5000A	TOC	
analyser	 (Shimadzu,	 Japan)	 or	 Seal	 AA3	 Segmented	 Flow	 Multi-	
chemistry	 analyser	 (Mequon,	WI,	 USA),	 respectively.	 To	 calculate	
DON, we measured total dissolved N and total dissolved inorganic N 
(NH4

+- N and NO3
−-	N)	simultaneously	in	each	extract,	and	then	sub-

tracted total dissolved inorganic N from total dissolved N (Jones & 
Willett,	2006).	Soil	pH	(1:2.5,	soil:water)	was	determined	using	a	pH	
meter	(Mettler	Toledo,	UK),	and	soil	water	content	was	determined	
gravimetrically.	Microbial	biomass	C	and	N	were	measured	using	the	
chloroform-	fumigation	technique	(Vance	et	al.,	1987); see SI meth-
ods	for	details.	All	extracts	were	filtered	through	ashless	Whatman	
No.	42	filter	papers.	Soil	total	C	and	N	content	(%)	were	measured	
on	oven-	dried	 soil	 (105°C)	 using	 an	Elementar	Vario	 EL	 elemental	
analyser	(Hanau,	Germany).

2.5  |  Soil extracellular enzyme assays

We	measured	a	suite	of	eight	extracellular	soil	enzymes	that	cata-
lyse	key	C-	,	N-		and	P-	cycle	processes.	These	included	β- glucosidase 
(GLC),	 cellobiohydrolase	 (CBH),	β-	xylosidase	 (XYL),	phenol	oxidase	
(POX),	 peroxidase	 (PER),	 N-	acetylglucosaminidase	 (NAG),	 phos-
phatase	 (PHO)	 and	 urease	 (URE).	 To	 calculate	 potential	 enzyme	
activity relative to microbial biomass, that is microbial biomass- 
specific	enzyme	activity,	we	divided	potential	enzyme	activities	by	
the	total	amount	of	microbial	biomass	C.	For	detailed	methods,	see	
(Broadbent et al., 2022).

2.6  |  Quantitative PCR

The	 absolute	 abundances	 of	 selected	 nitrification	 [amoA from 
ammonia-	oxidising	bacteria	 (AOB)	 and	archaea	 (AOA)]	 and	deni-
trification (nirK and nirS) genes were measured using quantita-
tive	PCR	(qPCR)	on	an	ABI	7300	Real-	Time	PCR	System	(Applied	
Biosystems	 Inc,	 USA).	 All	 reactions	 contained	 1 × Power	 SYBR	
Green	PCR	Master	Mix	(Life	Technologies	LTD,	UK),	bovine	serum	
albumin	 (BSA;	 0.06%;	 Sigma-	Aldrich	 Chemie	 GmbH,	 Germany),	
PCR	primers	and	2 μL	of	DNA	template	to	a	final	volume	of	25 μL. 
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    |  5 of 14BROADBENT et al.

Each	primer	(5 pmol)	were	used	for	genes	amoA	of	AOA,	nirK and 
nirS,	 but	 7.5 pmol	 for	amoA	 of	AOB.	 PCR	 reactions	 for	 denitrifi-
cation	 genes	 additionally	 contained	 dimethyl	 sulfoxide	 (DMSO,	
2.5%;	 Sigma-	Aldrich	 Chemie	 GmbH).	 The	 detailed	 PCR	 thermal	
profiles are described in (Broadbent et al., 2022). Positive stand-
ards containing cloned plasmids with the genes of interest were 
prepared	using	the	ZeroBlunt	TOPO	kit	(Invitrogen	AG,	USA),	fol-
lowing the manufacturer's protocol, and were included in the anal-
ysis. The sources of the genes were Nitrosomonas sp., fosmid clone 
54d9, Azospirillum irakense	DMS	11586	and	Pseudomonas stutzeri 
for amoA	of	AOB,	amoA	of	AOA,	nirK and nirS, respectively. The ef-
ficiency	of	qPCRs	was	calculated	based	on	the	linear	curve	of	the	
positive standards according to the formula E = 10̂( − 1∕slope) 
and	 was	 in	 the	 range	 of	 75%–95%.	 DNA	 samples	 were	 diluted	
1:100	 before	 quantification	 in	 order	 to	minimise	 PCR	 inhibition	
based	on	a	pre-	experiment	test.	Zero	values	indicate	that	no	am-
plification was observed.

2.7  |  Soil microbial community composition

Phospholipid	 fatty	acid	 (PLFA)	analyses	were	used	 to	characterise	
soil	 microbial	 community	 composition	 across	 different	 kingdoms,	
based on the methods of Bligh and Dyer (Bligh & Dyer, 1959).	PLFAs	
were	 extracted	 from	 freeze-	dried	 soil	 (Frostegård	 et	 al.,	1991), as 
modified by Buyer and Sasser (Buyer & Sasser, 2012), and ana-
lysed	on	a	gas	chromatograph	(Agilent	7890A	Gas	chromatograph,	
Santa	Clara,	CA,	USA).	The	abundance	of	PLFAs	was	expressed	 in	
nmol	PLFA	g−1	dry	 soil.	PLFAs	were	assigned	as	 indicators	of	 fun-
gal	and	bacterial	abundance;	see	SI	methods	for	details.	Total	PLFA	
abundance	and	the	ratios	of	fungal	to	bacterial	markers	and	Gram	
positive	(GP)	to	Gram	negative	(GN)	bacterial	markers	were	also	cal-
culated and analysed.

For	molecular	 analyses,	 DNA	was	 extracted	 using	 the	 ZR	 soil	
microbe	DNA	kit	(Zymo	research)	under	the	manufacturer's	recom-
mendations with a few amendments to account for sample prepa-
ration; see SI methods for details. Bacterial and fungal community 
structure was assessed using the rarefied sequence abundance of 
the	genetic	regions	encoding	for	16S	small	subunit	ribosomal	RNA	
(16S	rRNA)	and	the	internal	transcribed	spacer	region	2	(ITS2)—tar-
geting bacteria and fungi, respectively.

Extracted	DNA	was	quantified	using	the	nanodrop	8000	UV–
Vis	 spectrophotometer	 (ThermoFisher	 scientific,	MA,	USA),	 and	
amplicons were generated using the protocols fully outlined in 
(Seaton et al., 2022) and SI methods. Sequences were processed 
using	the	DADA2	(Callahan	et	al.,	2016)	pipeline	 in	R	V.3.0.17	(R	
Core	Team,	2021)	to	quality	filter,	merge,	denoise	and	assign	taxon-
omies,	with	the	addition	of	a	cutadapt	step	for	ITS	(Martin,	2011). 
Full bioinformatics settings are outlined in Seaton et al. (2022) and 
SI	methods.	After	quality	 filtering,	a	 total	of	2,224,136	bacterial	
(16S	 rRNA)	 and	1,229,923	 fungal	 (ITS2)	 sequences	were	used	 in	
the analysis for the spring, summer and autumn timepoints. To 
account for the effect of sequencing depth bias, the resultant 

ASV	 tables	were	 rarefied	 to	 an	 even	 depth	 of	 8035	 (16S	 rRNA)	
and 8262 (ITS2). For the winter timepoint, 618,266 bacterial (16S 
rRNA)	and	317,044	fungal	(ITS2)	sequences	were	used	in	the	anal-
ysis,	and	ASV	tables	were	rarefied	to	an	even	depth	of	6384	(16S	
rRNA)	and	5274	(ITS2).

2.8  |  Statistical analysis

To	 test	 how	plant	N-	uptake,	 soil	 biogeochemical	 pools,	microbial	
functioning and microbial community composition varied across 
seasonal timepoints (spring, summer and autumn), and were af-
fected by changes in snow cover (snow removal and snow control) 
and	 shrub	 expansion	 (shrub	 invaded	 and	 grass	 control),	 we	 used	
repeated	measures	linear	mixed	effects	models	(LMMs,	R	package	
‘nlme’ (Pinheiro et al., 2023)) and permutational multivariate analy-
sis	of	variance	 (PERMANOVA)	 tests	 (Anderson,	2001)	 (R	package	
‘Vegan’);	 see	 SI	 methods	 for	 details.	 To	 determine	 whether	 any	
significant interactions were antagonistic, synergistic or additive, 
we tested for significant differences between predicted mean ad-
ditive effects and actual interactive effects (Fong et al., 2018); see 
SI methods for details.

All	 statistical	 analyses	 were	 performed	 in	 R	 v	 4.0.5	 (R	 Core	
Team, 2021) and Rstudio 1.4.1106 (RStudio Team, 2021).

3  |  RESULTS

3.1  |  Seasonal coupling of plant and soil N- cycle 
processes

Many	 ecosystem	 properties	 showed	 pronounced	 and	 signifi-
cant seasonal dynamics indicative of temporal coupling between 
key	 plant	 and	 soil	 N-	cycle	 processes	 (p < .05;	 Figures 1 and 2; 
Tables S1–S3). In spring, we detected high root N concentrations 
and	 content	 that	 were	 associated	 with	 high	 inorganic	 N-	uptake	
and	 soil	 NH4

+ concentrations (Figures 1 and 2a).	 High	 soil	 am-
monium	concentrations	 in	 spring	were	 linked	 to	a	high	potential	
for	ammonia	oxidation	by	archaea,	based	on	the	quantitative	as-
sessment of the archaeal amoA genes. In contrast, potential deni-
trification (based on quantitative assessment of the nirK and nirS 
genes), soil NO3

− concentrations and microbial biomass N were 
all low in spring compared to other seasons. Fungal biomass was 
high in spring, which was associated with elevated potential activ-
ity	and	microbial	 investment	 in	peroxidase,	an	enzyme	produced	
primarily	 by	 fungi	 to	 degrade	 complex	 C-	compounds,	 including	
lignin.	The	relative	abundances	of	key	bacterial	taxa,	for	example	
Rhizobiales and Frankiales,	and	fungal	taxa,	that	is	Chaetothyriales, 
were also highest in spring (Figure 2a).

In summer, we observed a shift in plant N allocation from roots 
to shoots, and more acidic, nutrient- poor and drier soil conditions 
(Figures 1 and 2b). Specifically, shoot total N increased, whereas 
root	total	N,	soil	NH4

+	and	DON	concentrations,	pH	and	moisture	
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6 of 14  |     BROADBENT et al.

all	 decreased	 compared	 to	 spring.	 Ammonia-	oxidising	 bacteria	 in-
creased in abundance, based on the quantitative assessment of 
the bacterial amoA	gene.	Microbial	investment	in	a	range	of	C-		and	
N-	cycling	 enzymes	 was	 highest	 in	 summer,	 based	 on	 microbial	
biomass-	specific	 enzyme	 activities,	 indicating	 high	microbial	 turn-
over	of	nutrients.	Potential	enzyme	activities,	however,	were	gen-
erally	low	in	summer,	apart	from	high	phenol	oxidase	activity,	which	
degrades	complex	C-	compounds.

In	autumn,	we	documented	marked	changes	in	plant–soil	inter-
actions,	with	 increased	 importance	of	organic	N-	uptake	by	plants	
linked	to	high	DOC	and	DON	concentrations	in	soil	(Figures 1 and 

2c).	Microbial	 C-	limitation	was	 reduced,	 as	 demonstrated	 by	 high	
DOC	concentrations	and	high	C:N	ratios	of	microbial	biomass	and	
soil,	which	were	 likely	related	to	pulses	of	 labile	C	from	senescing	
plants. Soil NO3

− concentrations were highest in autumn, as were 
denitrifier abundances, based on quantitative assessment of the 
nirK and nirS	genes.	Potential	activities	of	C-	,	N-		and	P-	cycling	en-
zymes	were	also	highest	 in	autumn,	which	 is	 likely	related	to	high	
soil	microbial	biomass.	A	range	of	functionally	important	microbial	
taxa,	 including	 the	 bacterial	 orders	Acidobacteriales, Solibacterales 
and Myxococcales,	and	ericoid	mycorrhizal	fungi	(i.e.	Helotiales), were 
also	at	their	maximum	relative	abundances	in	autumn	(Figure 2c).

F I G U R E  1 Seasonal	dynamics	of	key	
plant and soil properties related to N- 
cycling	in	alpine	grassland.	Molecules	are	
coloured by constituent elements (N, blue; 
C,	pink;	H,	yellow;	O,	red).	SWC,	soil	water	
content. For further details, including 
actual	means	and	SE,	exact	p and χ2- 
values see, Tables S1–S3 and Figure 2. 
Created	with	BioRe nder. com.
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3.2  |  Direct and indirect climate change impacts 
disrupt seasonal N- cycle

Reduced	 snow	 cover	 and	 shrub	 expansion	 interactively	 disrupted	
the	 seasonal	 dynamics	 of	 key	 N-	cycle	 processes,	 leading	 to	 large	
reductions	 in	plant	N-	uptake	and	microbial	biomass	N,	 along	with	
marked	increases	in	denitrifier	abundances	(Figure 3; Table S4). On 
their	 own,	 snow	 removal	 and	 shrub	 expansion	 both	 increased	 or-
ganic	N-	uptake	 into	 shoots	 in	 autumn	 compared	 to	 control	 plots,	
thereby amplifying the strong seasonal dynamics of plant organic 
N-	uptake	 (Figure 3a).	 However,	 together,	 they	 had	 an	 antagonis-
tic	 effect,	whereby	 organic	N-	uptake	was	 reduced	 by	 82%	 in	 au-
tumn,	70%	in	spring	and	58%	in	summer,	compared	to	control	plots	
(Figure 3a).	Organic	N	was	 taken	up	directly	 by	plants,	 at	 least	 in	
part, as demonstrated by enrichment of plant tissue with 13C,	which	
would	not	occur	if	organic	N	had	been	mineralised	and	then	taken	by	
plants	as	inorganic	N.	Moreover,	there	was	a	significant	relationship	
between 13C	and	15N	excess	g−1 in roots when dual- labelled 15N and 
13C	organic	N	was	added	(χ2 = 19.6,	p < .01,	Figure S4), providing fur-
ther	evidence	of	direct	organic	N-	uptake.	Together,	 snow	removal	
and	shrub	expansion	also	reduced	inorganic	N-	uptake	by	83%	and	

80%	for	shoots	(Figure 3b) and roots (Figure 3d), respectively, with 
particularly	strong	effects	on	uptake	into	roots	 in	spring	and	sum-
mer,	and	uptake	into	shoots	in	summer	and	autumn.	This	reduction	
was driven by strong individual effects, as there was no significant 
interaction (Table S4).

Snow	removal	and	shrub	expansion	had	pronounced	interactive	
effects on the seasonal dynamics of soil N- cycling. Specifically, they 
had a negative additive effect that reduced soil microbial biomass 
N	by	19%	in	spring,	26%	in	summer	and	38%	in	autumn	(Figure 3e). 
Their interaction also led to a strong synergistic effect that in-
creased	denitrifier	abundances	by	253%	in	spring,	217%	in	summer	
and	136%	in	autumn,	based	on	the	quantitative	assessment	of	the	
nirK gene (Figure 3f). Snow removal decreased the abundance of 
ammonium-	oxidising	bacteria	by	67%,	from	248 ± 92	to	81 ± 19	cop-
ies (bacterial amoA gene) ng−1	DNA,	irrespective	of	vegetation	types	
or seasonal timepoints (χ2 = 5.7,	p < .05).	Climate	change	effects	on	
nitrifier and denitrifier abundances were mostly driven by changes in 
specific functional groups, rather than overall differences in the bio-
mass	of	the	microbial	community.	Total	PLFA	abundances	were	not	
significantly affected by snow removal (χ2 = 0.48,	p = .49),	but	were	
reduced	by	16%	with	shrub	expansion	(χ2 = 6.3,	p = .01).

F I G U R E  2 Seasonal	dynamics	of	full	range	of	plant	and	soil	properties	assessed	in	an	alpine	grassland.	Properties	are	grouped	by	the	
season	at	which	they	were	at	their	maximum:	(a)	spring;	(b)	summer;	and	(c)	autumn.	Some	properties	were	significantly	higher	(+S) or 
lower	(−S)	under	shrub	expansion.	AOA,	ammonia-	oxidising	archaea;	AOB,	ammonia-	oxidising	bacteria;	CBH,	cellobiohydrolase;	GLC,	β- 
glucosidase;	NAG,	N-	acetylglucosaminidase;	PER,	peroxidase;	PHO,	phosphatase;	POX,	phenol	oxidase;	URE,	urease;	XYL,	β-	xylosidase.	For	
purposes of visualisation, all variables were scaled to have a mean of 0 and a standard deviation of 1. Statistical analyses were performed on 
unscaled data n = 8.	For	further	details,	including	actual	means	and	SE,	exact	p and χ2- values, see Tables S1–S3.

(a)

(b)

(c)
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8 of 14  |     BROADBENT et al.

In	 winter,	 marked	 individual	 and	 interactive	 effects	 of	 snow	
removal	 and	 shrub	 expansion	 were	 observed	 on	 soil	 N-	cycling	
and microbial communities (Figure 4; Table S5). Specifically, snow 
removal	decreased	dissolved	organic	N	 (DON)	by	34%	 (Figure 4a) 
and	the	fungal:bacterial	(F:B)	ratio	by	11%,	regardless	of	vegetation	
type (Figure 4b).	Snow	removal	and	shrub	expansion	had	a	strong	
synergistic	 effect	 that	 increased	 denitrifier	 abundances	 by	 262%	
(Figure 4c). They also interactively modified soil bacterial commu-
nities (Figure 4d, snow and vegetation interaction; p < .05,	F = 1.4,	
r2 = .04,	 PERMANOVA),	 including	 decreases	 in	 the	 relative	 abun-
dances of bacterial orders Rhizobiales, Elsterales and Subgroup 2 
(Acidobacteriia), and increases in Acetobacterales (Figure S5). Snow 
removal had no significant effects on soil fungal community compo-
sition in winter (p = .59,	F = 0.9,	r2 = .03,	PERMANOVA).

Shrub	 expansion	 shifted	microbial	 communities	 towards	 oligo-
trophic	 taxa,	 irrespective	 of	 snow	manipulations,	 and	 altered	 the	
seasonal dynamics of soil microbial community structure and stoichi-
ometry (Figure 5; Table S4).	Specifically,	shrub	expansion	was	associ-
ated	with	a	marked	increase	in	the	Gram	positive	(GP):Gram	negative	
(GN)	bacterial	 ratio	 in	 spring	and	autumn	 (Figure 5A), and the F:B 

ratio in spring (Figure 5B).	The	microbial	biomass	C:N	ratio	also	in-
creased	with	shrub	expansion	in	spring	and	autumn	(Figure 5C). Soil 
fungal	community	composition	shifted	in	response	to	shrub	expan-
sion, showing the greatest divergence in autumn (Figure 5D, vege-
tation: p < .01,	F = 4.8,	 r2 = .05,	 seasonal	 timepoints:	p < .01,	F = 1.5,	
r2 = .03,	PERMANOVA).	This	was	likely	driven	by	higher	abundances	
of the order Helotiales, especially in autumn (Figure 2c), which in-
cluded	 ericoid	mycorrhizal	 fungi	 (ErM)	 associated	with	 ericaceous	
dwarf shrubs, such as Pezoloma ericae	 [= Rhizoscyphus ericae]	 and	
Oidiodendron maius. Bacterial community composition was also af-
fected	by	 shrub	expansion,	 although	 to	 a	 lesser	 extent	 than	 fungi	
(Figure 5E, p < .01,	F = 1.5,	r2 = .03).

4  |  DISCUSSION

Reduced	 snow	 cover	 and	 shrub	 expansion	 interactively	 disrupted	
seasonal	N-	cycle	dynamics,	likely	leading	to	cross-	seasonal	ecosys-
tem	N	losses.	When	combined,	both	climate	change	factors	reduced	
plant	N-	uptake	and	soil	microbial	biomass	N,	and	markedly	increased	

F I G U R E  3 Snow	removal	(Sn)	and	shrub	expansion	(Sb)	effects	on	seasonal	dynamics	(Se)	of	plant	N-	uptake	and	soil	N-	cycling	in	alpine	
grassland.	(a)	Shoot	organic	N-	uptake,	(b)	shoot	inorganic	N-	uptake,	(c)	root	organic	N-	uptake,	(d)	root	inorganic	N-	uptake,	(e)	microbial	
biomass N and (f) nirK	gene	abundances.	Snow	removal	and	shrub	expansion	effects	on	seasonal	dynamics	are	shown	by	lower	case	letters,	
which indicate post- hoc significant differences (p < .05)	between	seasonal	means	within	panels	(a,	d,	e).	Seasonally	consistent	effects	of	snow	
removal	and	shrub	expansion	are	shown	by	upper-	case	letters	(b,	f).	For	interactions	between	snow	removal	and	shrub	expansion	that	were	
antagonistic	(a,	autumn	only)	or	synergistic	(f,	all	seasons),	the	predicted	additive	effects	are	shown	by	dashed	lines.	Boxplots	show	mean,	SE	
and range, dots are individual data points, n = 8;	ns,	not	significant.	See	Table S4	for	details,	including	exact	p, df and χ2 values.

(a) (b)

(c) (d)

(e) (f)
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    |  9 of 14BROADBENT et al.

denitrifier abundances. Effects were most pronounced in spring (i.e. 
shortly after snow melt) and autumn (i.e. at the onset of plant se-
nescence), which are critical timepoints in ecosystem N- cycling due 
to transfers of N between plant and soil microbial pools. Reduced 
snow	cover	and	shrub	expansion	also	had	strong	individual	effects	
on soil N- cycling and microbial community composition. Specifically, 
reduced snow cover led to a decrease in the F:B ratio and soil DON 
pools in winter, along with cross- seasonal reductions in nitrifier 
abundances.	Shrub	expansion	caused	shifts	in	microbial	community	
composition and stoichiometry towards more N- limited conditions 
and	oligotrophic	 taxa	associated	with	 slower	nutrient	cycling,	par-
ticularly in spring and autumn. Together, these findings largely con-
firm our hypothesis that reduced snow cover and ericaceous shrub 
expansion	 interactively	 disrupt	 seasonal	 N-	cycle	 dynamics.	 This	
suggests the capacity of alpine ecosystems to retain N and support 
plant productivity may be diminished under future climate change.

Plant	N-	uptake	is	a	crucial	seasonal	N-	cycle	process	that	under-
pins plant productivity, but it was strongly disrupted by interactions 
between	reduced	snow	cover	and	shrub	expansion.	Plant	inorganic	
N-	uptake	 was	 higher	 in	 spring,	 which	 coincided	 with	 high	 plant-	
available	NH4

+	 concentrations,	a	key	source	of	 inorganic	N	 for	al-
pine	plants	(Miller	et	al.,	2007).	However,	reduced	snow	cover	and	
shrub	expansion	together	substantially	reduced	inorganic	N-	uptake	
across	all	seasons.	Meanwhile,	organic	N-	uptake	was	higher	 in	au-
tumn,	coinciding	with	seasonal	peaks	 in	DOC	and	DON.	This	sug-
gests that plant preferences for different N forms change seasonally 
to match the most abundant soil N forms, as observed in other alpine 
ecosystems	(Hong	et	al.,	2019).	However,	reduced	snow	cover	and	
shrub	expansion	interacted	to	severely	reduce	organic	N-	uptake	in	
autumn.	 This	 likely	 occurred	because	 reduced	 snow	 cover	 caused	
frost damage to vegetation, as occurs with arctic browning due 
to	 extreme	 winter	 warming	 events	 (Bjerke	 et	 al.,	 2014;	 Bokhorst	
et al., 2008;	Myers-	Smith	et	al.,	2020).

Ericaceous shrubs are particularly susceptible to the negative 
effects	of	reduced	snow	cover	and	associated	frost	damage	(Bjerke	
et al., 2017;	 Krab	 et	 al.,	 2018; Parmentier et al., 2018; Treharne 
et al., 2019;	Zong	et	al.,	2022). In contrast, alpine grasses may be more 
resilient	to	frost	damage	and	earlier	snow	melt	(Bjerke	et	al.,	2018; 
Möhl	et	al.,	2023), given they survive at higher altitudes with more 
extreme	temperatures.	Moreover,	some	alpine	grass	species	have	a	
flexible	phenology,	which	allows	them	to	start	their	growth	earlier	
in	the	year,	and	thereby	track	earlier	snow	melt	(Möhl	et	al.,	2022). 
Ericaceous	shrub	expansion	was	associated	with	lower	snow	depths,	
soil temperatures and soil moisture (Figure S1). This contrasts with 
the observed effects of larger deciduous shrubs, which trap snow in 
their perennial woody biomass, leading to higher soil temperatures 
due to the insulating properties of snow (Sturm et al., 2005;	Vowles	
&	Björk,	2019).	The	microclimatic	effects	of	ericaceous	shrub	expan-
sion	were	not	a	 focus	of	our	study,	but	 they	could	exacerbate	the	
effects of reduced snow cover on plant and soil processes and would 
warrant investigation in future studies. Our findings highlight that 
direct	climate	change	effects	on	key	ecosystem	functions,	such	as	
plant	N-	uptake,	will	be	strongly	modified	by	indirect	climate	change	
effects, such as shifts in vegetation.

Disruption	 of	 the	 seasonal	 dynamics	 of	 plant	 N-	uptake	 due	
to	reduced	snow	cover	and	shrub	expansion	was	closely	 linked	to	
decreased	 soil	microbial	biomass	N,	 and	a	marked	 increase	 in	 the	
abundance of denitrifiers. Specifically, decreased inorganic N- 
uptake	into	roots	in	spring	shows	that	a	key	seasonal	transfer	of	N	
from	soil	to	plants	was	disrupted.	This	was	linked	to	a	large	increase	
in denitrifier abundances (+253%).	Similarly,	 in	autumn,	denitrifier	
abundances,	which	were	already	very	high,	increased	by	136%	due	
to	the	combination	of	reductions	 in	snow	cover	and	shrub	expan-
sion.	This	coincided	with	large	reductions	in	plant	organic	N-	uptake	
(−82%)	and	soil	microbial	biomass	N	 (−38%).	Together,	 these	 find-
ings	 demonstrate	 that	 temporal	 coupling	 between	 key	 plant	 and	
soil N- cycle pools and processes was disrupted by reduced snow 
cover	and	shrub	expansion.	Specifically,	seasonally	important	trans-
fers of N from soil to plants following spring snow melt, along with 

F I G U R E  4 Snow	removal	(Sn)	and	shrub	expansion	(Sb)	
effects on soil properties in winter, shortly following snow 
removal. (a) Dissolved organic nitrogen concentrations (DON), (b) 
Fungal:Bacterial (F:B) ratio, (c) nirK gene abundances and (d) soil 
bacterial community composition (non- metric multidimensional 
scaling	[NMDS]	plot,	ellipses	show	the	95%	confidence	regions	
for the centroids of snow treatments and vegetation types). For 
the synergistic interaction between snow removal (Sn) and shrub 
expansion	(Sb)	(b),	the	predicted	additive	effect	is	shown	by	the	
dashed	blue	line.	Boxplots	show	mean,	SE	and	range,	dots	are	
individual data points, n = 8.	See	Table S5	for	details,	including	exact	
p, df and χ2 values.

(a) (b)

(c) (d)
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immobilisation of N in microbial biomass following plant senescence 
in autumn, were strongly disrupted, and this was accompanied by 
marked	increases	in	denitrifier	abundances.	Nitrogen	that	was	not	
immobilised in plant and soil microbial biomass in spring and au-
tumn,	respectively,	was	thus	likely	lost	via	denitrification,	leading	to	
reduced ecosystem N retention.

Increased denitrification in alpine ecosystems under future 
changes in snow cover could lead to N losses via higher emissions 
of N2O, a powerful greenhouse gas, or N2, as suggested by re-
cent	studies	in	seasonally	snow-	covered	ecosystems	(Blankinship	
&	Hart,	2012; Jia et al., 2021, 2022).	We	detected	a	high	poten-
tial for nitrification throughout spring and summer, as shown by 
high	abundances	of	ammonia-	oxidising	functional	groups.	Archaea	
dominated	ammonia	oxidation	at	our	site,	particularly	in	spring,	as	
in a previous study (Broadbent et al., 2021).	 Ammonia-	oxidising	
bacteria become important in summer and autumn, indicating 

temporal	 niche	 partitioning	 of	 ammonia	 oxidation	 across	 the	
growing season, as found in other grassland ecosystems (Regan 
et al., 2017). Under control conditions, this high potential for nitri-
fication was associated with a build- up of N in microbial biomass. 
However,	snow	removal	markedly	reduced	the	abundances	of	ni-
trifiers, and disrupted the seasonal increase in microbial biomass 
N.	Our	 study	 site	 was	 not	 as	 strongly	 N-	limited	 (mean	 soil	 C:N	
ratio between 16 and 17, Table S3) as other alpine ecosystems 
(Hagedorn	et	al.,	2019;	Mooshammer	et	al.,	2014).	This	could	ex-
plain why N was not immobilised by soil microbes, but rather lost 
via	denitrification,	 following	snow	removal	and	shrub	expansion.	
Reductions in ecosystem N retention due to reduced snow cover 
and	shrub	expansion	could	ultimately	constrain	plant	growth.	This	
could, in turn, counteract any future warming- induced increases 
in plant productivity, such as those recently observed in the 
European	Alps	(Rumpf	et	al.,	2022).

F I G U R E  5 Shrub	expansion	effects	
on the seasonal dynamics of soil 
microbial community composition and 
stoichiometry.	(A)	Gram	positive:Gram	
negative	(GP:GN)	bacterial	ratio,	(B)	
Fungal:bacterial	(F:B)	ratio,	(C)	Microbial	
biomass	(MB)	C:N	ratio,	(D)	fungal	
community composition and (E) bacterial 
community composition (non- metric 
multidimensional	scaling	[NMDS]	plots,	
ellipses	show	the	95%	confidence	regions	
for the centroids of vegetation types in 
each	seasonal	timepoint).	Shrub	expansion	
effects on seasonal dynamics are shown 
by lower case letters, which indicate 
post- hoc significant differences (p < .05)	
between seasonal means within panels 
(A–C).	Boxplots	show	mean,	SE	and	range,	
dots are individual data points, n = 8,	ns,	
non- significant. See Table S4 for further 
details,	including	exact	p, df and χ2 values.

(A)

(B)

(C)

(D)

(E)
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Another	potential	route	for	ecosystem	N	losses	due	to	reduced	
snow	cover	is	the	leaching	of	DON	during	freeze–thaw	cycles,	as	
evidenced by the immediate decreases in soil DON concentra-
tions following snow removal in winter. This was accompanied by 
a reduction in fungal biomass relative to bacteria (i.e. decreased 
F:B ratio), and shifts in bacterial community composition. These 
findings suggest that bacterial biomass is less susceptible to 
the negative impacts of snow removal in winter than fungi. This 
was	 likely	 due	 to	 rapid	 shifts	 in	 bacterial	 community	 composi-
tion,	with	 increases	 in	 some	 taxa	 (e.g.	Rhizobiales, Elsterales and 
Acetobacterales)	 compensating	 for	 decreases	 in	 other	 taxa	 (e.g.	
Acetobacterales).	 However,	 the	 responses	 of	 bacterial	 taxa	 de-
pended on vegetation type, which highlights the importance of 
plant–microbial	interactions	for	microbial	community	responses	to	
climate	change.	As	is	the	case	with	most	snow	manipulation	exper-
iments, reductions in snow cover and advances in snow melt tim-
ing applied in our study are relatively small compared to the huge 
reductions	in	snow	cover	(80%–90%	at	1500 m)	and	earlier	snow	
melt	(5–10 weeks	at	1500 m)	predicted	for	the	end	of	the	century	
in	 the	 Alps	 (Beniston	 et	 al.,	2018;	 Rixen	 et	 al.,	2022). This sug-
gests	the	effects	we	detected	will	likely	become	more	pronounced	
under	future	climate	change.	While	reductions	in	snow	cover	due	
to	 climate	 change	 are	 relatively	 widespread	 globally	 (Thackeray	
et al., 2019),	 some	 seasonally	 snow-	covered	 ecosystems	 are	 ex-
periencing increases in snow depth, such as parts of northeast 
China	 and	 the	Mongolian	plateau	 (Tan	et	 al.,	2019).	Here,	 deep-
ened snow cover has also been shown to loosen temporal coupling 
between microbial and plant N- utilisation, largely due to increased 
N- leaching and N2O emissions during spring thaw (Jia et al., 2021, 
2022).	Changes	 in	snow	conditions,	whether	 increases	or	 reduc-
tions, clearly have important implications for ecosystem nutrient 
cycling.	However,	our	study	demonstrates	that	the	type	of	vegeta-
tion present and future shifts in vegetation due to climate change 
are essential for understanding and predicting how changes in 
snow cover will affect ecosystem nutrient cycling and retention.

Shrub	expansion	had	an	especially	strong	influence	over	soil	mi-
crobial community structure and stoichiometry during spring and 
autumn in our study. These seasons are typically neglected in eco-
logical research, but we found that they are crucial for below- ground 
processes in alpine ecosystems, including resource transfers be-
tween plants and soil microbes. The presence of ericaceous shrubs 
was	associated	with	an	increase	in	the	Gram	positive:	gram	negative	
bacterial	and	the	microbial	biomass	C:N	ratios	in	spring	and	autumn,	
which are both associated with microbial N- limitation, and an in-
crease	in	the	use	of	recalcitrant	C-	substrates	by	microbial	communi-
ties (Fanin et al., 2019). The presence of shrubs was also associated 
with a much higher F:B ratio in spring. This is pertinent for alpine 
ecosystem	functioning	because	spring	was	a	key	timepoint	for	soil	
fungal	biomass	and	functioning	(e.g.	peroxidase	activity).	Together,	
our	 findings	demonstrate	 that	 the	effects	of	ericaceous	 shrub	ex-
pansion on soil microbial communities show pronounced seasonal 
variation. Future studies, especially those conducted within one 
season	 (usually	 summer),	 should	 take	 this	 into	account.	Moreover,	

our	results	provide	clear	evidence	that	ericaceous	shrub	expansion	
is associated with a cross- seasonal shift towards microbial functional 
groups	associated	with	nutrient-	poor	soil	and	slower	fungal	(and	GP	
bacterial)	 energy	 channels	 (Wardle	 et	 al.,	2004). Ericaceous shrub 
expansion	will	therefore	likely	lead	to	increased	accumulation	of	soil	
organic carbon in alpine ecosystems, as found recently in boreal for-
ests (Fanin et al., 2022).

In conclusion, by characterising the seasonal dynamics of a 
wide range of plant and soil N- cycling processes in alpine grassland 
(Figures 1 and 2), we show that spring (i.e. shortly after snow melt) 
and	autumn	 (i.e.	 the	onset	of	plant	senescence)	are	key	 timepoints	
for	the	seasonal	N-	cycle.	Moreover,	using	experimental	field	manip-
ulations, we demonstrate that two pervasive climate change effects, 
reduced	snow	cover	and	shrub	expansion,	 interactively	disrupt	 the	
temporal	coupling	of	key	plant	and	soil	microbial	N-	cycle	processes	
during these seasonal timepoints. This included antagonistic effects 
that	markedly	 reduced	plant	N-	uptake,	and	synergistic	effects	 that	
markedly	increased	soil	denitrifier	abundances,	which	together	indi-
cate ecosystem N losses. Disruption of temporal coupling between 
plant and soil N- cycle processes in alpine grasslands could therefore 
diminish the capacity of these globally widespread ecosystems to re-
tain N, with potentially far- reaching implications for ecosystem pro-
ductivity.	More	generally,	our	 study	 shows	 that	direct	 and	 indirect	
climate change factors, which are co- occurring in many ecosystems 
worldwide, can have non- additive interactive effects that precipitate 
sudden shifts in biogeochemical cycling. These effects are impossible 
to predict based on the individual effects of either climate change 
factor on its own, which highlights the importance of studying the 
interactive effects of direct and indirect climate change factors.
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