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The Tigray region is an ancient entry route for the domestic chickens into Africa.

The oldest African chicken bones were found in this region at Mezber, a pre-

Aksumite rural farming settlement. They were dated to around 800–400 BCE.

Since then, the farming communities of the region have integrated chicken into

their livelihoods. The region is also recognised for its high chicken-to-human

population ratio and diverse and complex geography, ranging from 500 to

4,000m above sea level (m.a.s.l.). More than 15 agro-ecological zones have

been described. Following exotic chicken introductions, the proportion of

indigenous chicken is now 70% only in the region. It calls for the

characterisation of indigenous Tigrayan chicken ecotypes and their habitats.

This study reports an Ecological Niche Modelling using MaxEnt to characterise

the habitats of 16 indigenous village chicken populations of Tigray. A total of

34 ecological and landscape variables: climatic (22), soil (eight), vegetation, and

land cover (four), were included. We applied Principal Component Analysis

correlation, and MaxentVariableSelection procedures to select the most

contributing and uncorrelated variables. The selected variables were three

climatic (bio5 = maximum temperature of the warmest month, bio8 = mean

temperature of the wettest quarter, bio13 = precipitation of the wettest month),

three vegetation and land cover (grassland, forest land, and cultivated land

proportional areas), and one soil (clay content). Following our analysis, we

identified four main chicken agro-ecologies defining four candidates

indigenous Tigrayan chicken ecotypes. The study provides baseline

information for phenotypic and genetic characterisation as well as

conservation interventions of indigenous Tigrayan chickens.
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Introduction

The multifaceted benefit of the chicken triggered their

human-mediated transport to a wide range of environments,

which led them to adapt to different agro-ecologies. The Tigray

region is likely one of the first routes for the domestic chicken to

Africa, with the earliest osteological evidence of chicken in the

continent discovered at theMezber site in the pre-Aksumite rural

farming settlement, dated at least 800–400 BCE (Woldekiros and

D’Andrea, 2017). Since then, domestic chicken has been

integrated into the livelihood of all communities across

Ethiopia. Still, the Tigray region is recognised for its higher

chicken-to-human population ratio compared to other

Ethiopian regions (e.g., 1.3, 0.9, and 0.5 for Tigray, Amhara,

and the Oromia regions, respectively) (CSA, 2017, 2020).

Furthermore, it has the highest chicken density per km2, with

139, 129, and 72 chickens for the Tigray, Amhara, and Oromia

regions, respectively (CSA, 2017; 2020). Tigray also comprises

diverse eco-geographic areas, following large altitudinal

variations, ranging between 500 and 4,000 m above sea level

(m.a.s.l.) (Waterbeheer and Van Gaelen, 2011; Haftom et al.,

2019). Haftom et al. (2019) have divided the region into 15 agro-

ecological zones based on the region’s traditional elevation-based

classification and aridity. Despite such agro-ecological diversity,

indigenous Tigrayan chicken populations are still grouped as a

single category, indigenous chicken, with no specific ecotypes yet

recognised. Describing indigenous chickens as one single group

while there is such a diverse environment in the Tigray region is

likely inappropriate (Vallejo-Trujillo et al., 2022).

As mentioned above, chicken husbandry is old in the region

(Woldekiros and D’Andrea, 2017). Also, indigenous chickens are

found across the region, where they represent a major source of

income for the farmer communities. The agro-ecologies of the

Tigray region are dominantly characterized by lowland

(<1,500 m. a.s.l.) and midland (1,500 < altitude <2,500 m.

a.s.l.) areas, covering 92% of the region (Beyene et al., 2001).

The environment is typically warm, with an annual average

temperature of 20°C (Hijmans et al., 2005; Fick and Hijmans,

2017). Environmental constraints and human socio-cultural

preferences are believed to have shaped the diversity of the

chicken. Birds typically have large appendages (to dissipate

heat) and have white or light plumage (to shine sunshine).

However, in high predation exposed areas, farmers prefer to

select dark color chickens, which supposedly will make them less

visible to predators (Terfa et al., 2019). Double comb and large

frame cocks are the most preferred for breeding and fetch a high

price in the market (Alem and Yayneshet, 2013; Asfaw et al.,

2017). Hence, besides the environmental adaptation of the

chicken, farmers’ and consumers’ preferences have also

contributed to adapting the indigenous chicken to the local

chicken production systems.

Indigenous chickens are raised under a scavenging system

(free range) by the smallholder farmers with little supplementary

feed input (e.g., kitchen waste). Accordingly, environmental

challenges (e.g., temperature, diseases, feed, water and

predation) have been major and selective factors with

indigenous chicken expected to be locally adapted.

This lack of recognition of the adaptive diversity of

indigenous chickens associated to relatively low productivity

have contributed to the massive introduction of commercial

breeds in the region. It follows the objectives of the Ethiopian

livestock masterplan to increase chicken meat production by

235% and egg production by 828% (Shapiro et al., 2015, 2017), to

meet the expected increased demand of 80% for meat and 356%

for egg within the country, by the year 2020. Following these

introductions, the proportion of exotic chicken and their

crossbred is now higher in the Tigray region (30%) compared

to the national average (21%), the Amhara (15%) and Oromia

(22%) regions (CSA, 2021). This proportion increased by 67% in

the past year (CSA, 2020; 2021), following increased consumer

demand for chicken products and by-products. This calls for the

rapid characterisation of indigenous Tigrayan chicken and their

habitats to guide conservation and breeding improvement

initiatives. Studying the habitats and defining the potential

chicken ecotypes in the Tigray region will provide insight into

where and what to conserve.

Ethiopia is one of the countries that has signed the

international Convention on Biological Diversity (CBD)

(https://www.cbd.int/), with signatory countries committed

to take measures to protect biodiversity and to regularly report

on the progress (Mackenzie and Jenkins, 2005). Yet, little

effort has been undertaken to conserve and protect the

indigenous livestock species in the country, including the

Tigray region, with only one chicken improvement and

conservation program started so far (Hailu et al., 2021).

However, considering the low productivity of the

indigenous chickens compared to the exotic breeds and

their crossbreds, it may be expected that their population

size will reduce considerably in the coming years.

Accordingly, they may be considered as endangered.

The Ecological Niche Modelling (ENM) approach has been

previously used to understand wild species’ habitat distribution

and conservation (Thorn et al., 2009). Different algorithms are

available for ENM but a prominent method applies maximum

entropy modelling - a machine learning algorithm - in MaxEnt

software (Phillips et al., 2006). It has better prediction power than

other methods and is increasingly becoming the method of

choice for habitat characterisation since its first application in

2004 (Morales et al., 2017). The MaxEnt method has numerous

advantages: it requires only presence data, it is applicable for both

continuous and categorical data simultaneously, it efficiently

predicts optimal probability distribution, it is amenable to

analysis and it provides continuous outputs (Phillips et al.,

2006). The ENM approach has been applied to different

species. For examples Nagaraju et al. (2013) applied ENM to

identify suitable habitats and to assess regenerating ability and
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genetic diversity of the Lam tree Myristica malabarica. Bentlage

and Shcheglovitova (2012) assessed niche similarity of Anolis

lizard species, Suárez-Mota et al., 2015 used it for the

characterisation and conservation of the habitat of

Dyscritothamnus and Loxothysanus flowering plants. Roubicek

et al. (2010) used it to study time frame impact of an

environmental variable on plants and insects, and Pitt et al.

(2016) used it to predict past potentially suitable habitats of

domestic chicken across the world in comparison to the habitats

of their wild ancestor, Red Junglefowl (Gallus gallus).

In livestock, the application of the ENM approach is still in

its infancy, with only a few studies so far, primarily in chicken

(Vajana et al., 2018; Lozano-Jaramillo et al., 2019; Gheyas

et al., 2021; Kebede et al., 2021; Vallejo-Trujillo et al., 2022).

Applying ENM on Ethiopian indigenous chickens, Gheyas

et al. (2021) identified six major environmental variables.

Then, the author chose the extreme environments to

identify signatures of positive selection in the genome of

these populations associated with the selected

environmental parameters. Kebede et al. (2021) studied

Ethiopian environmental gradients and using ENM

classified the indigenous Ethiopian chicken’s habitats into

three agro-ecologies. They reported significant

morphological differences between the chicken populations

among these agro-ecologies, supporting them as chicken

ecotypes (Kebede et al., 2021). In a recent study (Vallejo-

Trujillo et al., 2022), described a framework for delineating

chicken ecotypes through a detailed environmental

characterisation of the population habitats using ENM,

followed by the genomic characterisation of the ecotypes.

None of the previous studies have fully characterised the

Tigrayan indigenous chicken populations that have been

adapted to the region’s complex landscape and diversified

agro-ecology. For example (Vallejo-Trujillo et al., 2022), study

only included Tigrayan indigenous chicken populations living

between 1,295 and 2,312 m. a.s.l.

This study was therefore designed to include Tigrayan

chicken populations representing all the altitudinal zones of

the Tigrayan regions with the aim to identify candidate

Tigrayan chicken ecotypes for further phenotypic and

genetic characterisation as well as for guiding conservation

interventions. Here we have adapted the ENM protocol

described in Vallejo-Trujillo et al. (2022) for idenifying the

candidate Tigrayan chicken ecotypes and provide a detailed

step-by-step desciption of the protocol.

Material and methods

Sampling sites and sample size

The study was carried out in the Tigray regional state of

Ethiopia, located 556 km away from the capital city Addis

Ababa. This region is laid at 120–150 N and 360 30′- 400,300 E
and covers ≈54,000 sq km (Yihdego et al., 2018). It has an

estimated population of 5.2 million, of which 77% live in rural

areas (CSA, 2017). Agriculture is the mainstay of the people.

The altitude range from 500 to 4,000 m. a.s.l. And the agro-

ecologies comprised 53% lowland (<1,500 m. a.s.l.), 39%

midland (1,500 to 2,300 m. a.s.l) and 8% highland

(>2,300 m. a.s.l.) areas (Beyene et al., 2001). The soil,

geology, vegetation cover, and topography across this

region are diverse, which result in different agro-ecologies

(Hadgu et al., 2013). The climate of the region is

predominantly categorised as semi-arid. The main rainy

season is June to mid-September, whereas the warmest

season is from March to May.

A stratified sampling strategy, based on the agro-

ecological zones and the presence of indigenous chicken,

(Figure 1B) (Hadgu et al., 2013), was applied to select

districts and villages, with a total of 16 districts with

32 villages (Table 1). For each village, latitude and

longitude were taken using a geographic positioning system

(GPS) GARMIN 72 with an accuracy level of fewer than 3 m

(Figure 1A). The district was considered as the entry point for

the ENM analysis, so the number of environmental

observation for each district depended of the number of

villages with 10 data points per village. It ranged from 20

(two villages) to 30 (three villages) data points (Table 1).

Generating environmental predictors

A total of 34 ecological and landscape variables (Table 2),

including 22 climatic, eight soil, and four vegetation and

landcover, were selected, based on their biological relevance

to indigenous chicken husbandry and suitability for abiotic

area classification (Préau et al., 2018). The gridded climatic

data (mean values for years 1970–2000) were obtained from

the WorldClim database (http://www.worldclim.org/for the

variables bio1 - bio19, ‘water vapor pressure’ and elevation)

with a spatial resolution of 1 km2 (Hijmans et al., 2005; Fick

and Hijmans, 2017). The seven soil variables that potentially

determine food availability for foraging chickens were

obtained from the SoilGrids 1 km v 0.5.8 database

(containing global gridded soil information) (Hengl et al.,

2014). The water capacity of the soil (mm water per 1 m soil

depth) with a 0.5-degree grid was obtained from the Spatial

Data Access Tool (SDAT; ORNL DAAC 2017) from NASA

(Batjes, 2000). Vegetation and land cover variables (total

cultivated land, forest land, and grass/scrub/woodland)

that affect both food availability and predation were

generated from the ‘Harmonized World Soil Dataset -

Land Use and Land Cover’ with a 30 arc-second raster’s

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009) (Fischer et al.,

2008). The crop dominance data were accessed from the
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Global Food Security Analysis-Support Data (Teluguntla

et al., 2015; Oliphant et al., 2017).

R packages’ rgdal’, ‘maptools’, ‘rgeos’, and ‘raster’ were

used to adjust the dimension and extension of the grid to

1 km2 based on the earth-fixed terrestrial reference system

and geodetic datum WGS84 for the agro-ecological

variable ‘raster’ layers. Rather than representing the

sampling area with a single point, we added proximate

areas to enhance the probability of an accurate

description of the area. Hence, each sampling

population represents ten sampling points (one sampling

point and nine nearby surrounding areas within 1.2 km2

FIGURE 1
Maps showing the sampling sites of indigenous chickens from the Tigray region (A) based on bio-elevation, and (B) based on major agro-
ecological zones; source (MOA, 1998).
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taken as random mid-point sample). Google Earth Pro

7.3.1.4507 (2016) was applied, to identify these points, and

then the separate grids were extracted using the ‘raster’ R

package.

Environmental variable selection
procedure

The environmental variables were analysed with two

investigative approaches—Spearman correlation and

Principal Component Analysis (PCA), and one selection

process - ‘MaxentVariableSelection’ (MVS). First, we

examined the correlations among the environmental

variables. The strengths of correlation was defined as: rs ≥
0.8 very strong, rs ≥ 0.6 to <0.8 strong, rs ≥ 0.4 to <0.6 moderate,

rs ≥ 0.2 to <0.4 weak, and rs ≥ 0 to <0.2 very weak. Since most of

the environmental variables (except soil cation exchange) did

not follow a normal distribution pattern (Shapiro-Wilk

normality test output: W = 0.6–0.98; p = 2.20e-16 to 4.60e-

04), correlations among the variables were tested using

Spearman’s rank correlation coefficients (r). The correlations

were evaluated using a threshold value of 0.6 with p < 0.0001.

The results were plotted using the R package ‘corrplot’ (Wei

et al., 2017). Then, the PCA was performed to assess each

variable’s contribution and relationship in their respective

group (climatic, soil, and vegetation and land cover) using

the R package ‘stats’. The variables’ eigenvector (direction)

TABLE 1 Sampling areas.

Wereda (districts) Villages Latitude Longitude Altitude in
meter (m.a.s.l.)

Agroecology

Abergelle Adi_Weyane 13.55 38.94 1,699 Midland

Abergelle Lemlem 13.28 39.06 1,598 Lowland

Hawzien Debrebzien 14.16 39.39 2,187 Midland

Hawzien Debrehiwot 13.96 39.38 2,106 Midland

Ofla Selam-Bkalsi 12.65 39.38 2,809 Highland

Raya_Azebo Genete 12.76 39.68 1,671 Midland

Raya_Azebo Rabia-Tsigea 12.84 39.63 1924 Midland

Hintalo_wajirat Mesano 13.24 39.44 2033 Midland

Hintalo_wajirat Meseret 13.75 39.72 2,158 Midland

Tahtay-Adyabo Gemhalo 14.57 37.76 1,062 Lowland

Tahtay-Adyabo May-Kuhli 14.23 37.73 1,111 Lowland

Tahtay-Qoraro Adi_Gidad 14.09 38.26 1888 Midland

Tahtay-Qoraro May-Tafat 14.23 38.34 1895 Midland

Kafta_Humera May-Kadra 14.07 36.56 626 Lowland

Kafta_Humera Adi-Goshu 14.15 37.35 1,158 Lowland

Kafta_Humera Adebay 14.20 36.75 665 Lowland

Welkayt Mogue 14.05 37.49 907 Lowland

Welkayt Adi_Remets 13.77 37.33 1970 Midland

Tselemti May_Dagusha 13.68 38.68 1,245 Lowland

Tselemti Dima 13.68 38.32 1,613 Lowland

Tsegedie Enda_mariam 13.39 37.41 2,850 Highland

Tsegedie Enda_Slassie 13.42 37.39 2,584 Highland

Ahferom Sefo 14.36 39.25 2,175 Highland

Ahferom May_Keyah 14.42 39.4 2,419 Highland

Adwa Mariam_Shewito 14.23 39.05 2,227 Highland

Adwa Bete_Yohannes 14.24 38.92 2,145 Highland

Laelay_Maichew Dura 14.2 38.75 1943 Midland

Laelay_Maichew Madego 14.26 38.71 1,662 Lowland

Tahtay_Maichew Chila 14.3 38.62 1,570 Lowland

Tahtay_Maichew Shenako 13.83 38.64 2064 Midland

Degua_Tembien Melfa 13.64 39.13 2,495 Highland

Degua_Tembien Seret 13.6 39.17 2,494 Highland
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and eigenvalue (magnitude) were assessed in the PCA-based

inspection. In the final variable selection process, all

variables were simultaneously evaluated using the R

package MVS (Jueterbock, 2015) to select a set of

uncorrelated and high contributing variables for the

execution of the ENM.

TABLE 2 Climatic variables analysed.

Variables Description Units Database

Climate
variable

Bio1 Annual Mean Temperature 0C WorldClim - Global Climate Data http://www.
worldclim.org/Bio2 Mean Diurnal Range (Mean of monthly

max temp - mean of monthly min temp)

0C(Bio2/Bio7)

Bio3 Isothermality (BIO2/BIO7) (* 100) 0C

Bio4 Temperature Seasonality (standard
deviation *100)

0C

Bio5 Max Temperature of Warmest Month 0C

Bio6 Min Temperature of Coldest Month 0C

Bio7 Temperature Annual Range (BIO5-BIO6) 0C(Bio5-Bio6)

Bio8 Mean Temperature of Wettest Quarter 0C

Bio9 Mean Temperature of Driest Quarter 0C

Bio10 Mean Temperature of Warmest Quarter 0C

Bio11 Mean Temperature of Coldest Quarter 0C

Bio12 Annual Precipitation mm/m2

Bio13 Precipitation of Wettest Month mm/m2

Bio14 Precipitation of Driest Month mm/m2

Bio15 Precipitation Seasonality (Coefficient of
Variation)

mm/m2 (Coefficient
of variation)

Bio16 Precipitation of Wettest Quarter mm/m2

Bio17 Precipitation of Driest Quarter mm/m2

Bio18 Precipitation of Warmest Quarter mm/m2

Bio19 Precipitation of Coldest Quarter mm/m2

WatVapPress01 Water Vapor Pressure of the wettest month kPa

WatVapPress01 Water Vapor Pressure of the driest month kPa

Elevation Meters above sea level m.a.s.l

Soil variable Soil_pH Soil pH pH (x10 in H2O) Global gridded soil information https://soilgrids.org/

Soil_CatEx_Capacity Soil Cation Exchange Capacity cmole/kg at depth
0.00 m

Soil_Bulk_D Soil Bulk Density kg/m3 at depth
0.00 m

Soil_Organic Carbon Soil Organic Carbon g/kg at depth 0.00 m

Soil_Clay Soil Clay Content mass fraction in % at
depth 0.00 m

Soil_Silt Soil Silt Content mass fraction in % at
depth 0.00 m

Soil_Sand Soil Sand Content mass fraction in % at
depth 0.00 m

Soil_Water_Capacity Soil total available Water Capacity mm2/1 mt soil depth Spatial Data Access Tool (SDAT)-NASA https://webmap.
ornl.gov/ogc/dataset.jsp?ds_id=546

Vegetation
variable

Forest Forest Cover % Harmonized World Soil Dataset http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/

Grass_Land Grass/Shrub Land %

Cult_L Land use for agricultural purpose
(Cultivated land)

%

Crop_Dominance Crop Dominance (major crops) Category Global Food Security Analysis-Support DATA https://
croplands.org/
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Selection of model parameters

The performance of ENM can be affected by the model

parameters—feature class (FC) and beta-multiplier (BM), and

the default setting may not be ideal for generating maximum

entropy (Anderson and Gonzalez, 2011; Cao et al., 2013). The FC

work on transforming the environmental predictors to model

complex relationships (Elith et al., 2010). The BM helps to

prevent over-complexity or overfitting of the model by

manipulating the intensity of the nominated FC (Merow

et al., 2013). ENMeval package (Kass et al., 2021) was applied

to choose the best combination of FC and BM. The following FCs

were tested: linear (L), quadratic (Q), product (p), hinge (H),

categorical (C), and threshold (T), in combination with different

values of BM ranging from one to tweleve. The least Akaike

Information Criterion, corrected for small samples (AICc)

values, was considered as the point for the optimal FC and

BM combination (Muscarella et al., 2014). The best FC and BM

identified here were used to optimise the MaxEnt and to develop

the suitability maps.

Ecological niche modelling

MaxEnt (ver. 3.4.1; https://biodiversityinformatics.amnh.

org/open_source/maxent/) was used for the ENM analysis of

the environments of district (Phillips et al., 2006). First, we ran

the MaxEnt with all 320 points as a single entity to evaluate the

model’s performance, and then we run it for the individual

16 districts. In each ENM run, we withheld 25% of the

occurrence data as testing, while we used the remaining 75%

as training; we then applied the regionalised ten k-fold cross-

validations (Vallejo-Trujillo et al., 2022). We used the

logarithmic scale of logistic and cumulative outputs to develop

the niches. The logistic output was used for the pairwise

comparison of the models and the cumulative one was used

to display the suitability habitat.

We used the Area Under the Receiver Operating

Characteristics (ROC) Curve (AUC) to evaluate the model’s

accuracy (Phillips et al., 2006). The AUC values ranged from

0 to 1, where 1 is most suitable, and 0 is unsuitable, with values in

between showing suitability in gradient. Further, the jackknife

FIGURE 2
Flowchart of pipeline for Tigrayan chicken ecotype definition following the Ecological Niche Modelling (ENM) approach.
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was used to assess the importance and contribution of the

variables.

Pairwise comparison of population
models for ecotypes definition

The ENMTools Perl software (Warren et al. (2008); Warren

and Seifert, (2011)) was applied to assess the similarity of habitats

among the populations following Warren et al. (2008) approach

that runs in two steps. In the first procedure, we run Pearson’s

pairwise correlation between the population models, with

coefficient values ranging from -1 to +1 (negative values

indicate negative linear correlation, positive values indicate

positive linear relationship, and if it approaches zero, it

indicates no linear correlation between the district’s niches).

The second procedure used Hellinger’s distance or Niche

overlap (noted with the letter ‘I’) with values ranging from 0 to

1 (a value close to one means the niches are closely similar, and a

value close to zero, they are entirely distinct) (Warren et al., 2008).

Similarity metrices from these two methods were then used to

cluster the populations into candidate ecotypes as follows.

We applied ‘stats’ and ‘cluster’ packages of R to calculate

the “Euclidean distance” of each dataset (Pearson’s pairwise

correlation and Hellinger’s distance). Using these Euclidean

distance values, we performed hierarchical clustering.

We clustered the topologies by calculating the

agglomerative coefficients of the single or minimum

linkage, complete or maximum linkage, average or

UPGMA, and Ward methods. We chose the Ward method

due to its largest agglomerative coefficient value that explains

the strength of the structuring.

Finally, for easy visualisation of the similarity between ENMs,

we generated dendrograms and heatmaps for each dataset using

the ‘ggplot2’ and ‘Reshape2’ R packages. This helped to classify

the populations from the districts into potential ecotypes in

FIGURE 3
Spearman correlation test for three different groups of climatic and environmental parameters evaluated (A)Climatic variables, (B) soil variables,
(C) vegetation and land cover variables.
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combination with the Jackknife of AUC and percent contribution

of the variables. The summary of the procedure we followed is

presented in Figure 2.

Results

Correlation-based explanation of
variables

Before using for ENM, the environmental variables were

shortlisted by removing highly correlated variables and those

with a low contribution to the model. Hence, a threshold of

rs > 0.6 (with a p-value of 0.001) was used to remove variables

from a correlated set except for the one variable expected to be

the most relevant one to the indigenous chicken biology. The

Spearman’s rank-order correlation results for the three groups

of variables (climatic ‘A’, soil ‘B’, and vegetation and land

cover ‘C’) are shown in Figure 3. In the soil group, there are

five variables with a correlation coefficient <0.6 (the threshold
for retaining variables for ENM). These are the pH, water

capacity, and contents of organic matter, clay, and silt. The

vegetation and land cover group (forest land, crop dominance,

and grassland) are not strongly correlated. Based on the

FIGURE 4
Principal component analyses of 16 Tigray chicken districts based on agro-ecological and climatic variables (A) vegetation and land cover
variables, (B) soil variables, and (C) climatic variables.
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correlation from the climatic variables, we find six variables

with a correlation <0.6 out of the 22 variables, namely bio3

(isothermality), bio10 (mean temperature of the warmest

quarter), bio13 (precipitation of the wettest month), bio17

(precipitation of the driest quarter), bio18 (precipitation of the

warmest quarter), and bio19 (precipitation of the coldest

quarter).

PCA of Tigrayan chicken populations
based on agro-climatic variables

We perform the PCA-based clustering to see how the

34 environmental variables cluster the indigenous chicken

population and the association of each variable with the

population. The PCA plots of Tigrayan chicken samples

based on environmental data (Figure 4) helped us to assess

the environmental variables’ contribution and association.

The arrows and direction of the variables show which PC

and axis (x or y) are associated with the shown variance. The

arrow lengths indicate the extent of the contribution of a

variable in explaining the populations’ environmental

structure. The first two principal components (PC1 and

PC2) represent more than 73% of the variance, with the

distribution of the populations widely different among the

PCAs using the three defined variable clusters (vegetation and

landcover ‘A’, Soil ‘B’, and climatic ‘C’). All four vegetation

and land cover variables show high variation (Figure 4A). For

the soil variable, we see several variables showing contribution

in the same direction (no variation) (e.g. soil bulk density and

FIGURE 5
Percent contribution of the final selected seven variables usingMVS. The left-hand side of the diagram shows the biological importance of these
variables to environmental adaptation in chicken.

FIGURE 6
AICc values for analyzed feature class (FC) combinations using different beta-multiplier (BM) values using ENMeval.
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soil pH, or soil clay content and soil cation exchange capacity)

(Figure 4B). Four variables, namely soil organic, sand, clay,

and water capacity content, show high variation. Within the

climatic variables (Figure 4C), the water vapor pressure for the

hottest month (April) and bio-elevation show strong variation

and no association with other variables. On the contrary,

variables bio3, bio4, bio18, and bio19 show weak

contributions. Despite differences between PC plots, several

districts appeared repeatedly close to each other, such as

Welkayt - Tsegedie, Degua Tembien—Tahtay Qoraro,

Tselemti—Tahtay Adyabo, and Adwa—Laelay Maichew. It

suggests a homogeneous landscape configuration for these

districts.

MaxentVariableSelection (MVS) package
for variable selection

While the correlation and principal component analyses

described above explored the relationships among variables

(soil, vegetation and land cover, and climatic), MVS was used

to simultaneously analyse all variables to select the most

important set of uncorrelated variables (r < 0.6). Accordingly,

seven variables (three from climatic variables (bio5 = maximum

temperature of the warmest month, bio8 = mean temperature of

the wettest quarter, and bio13 = precipitation of the wettest

month), three from vegetation and land cover variables

(grassland, forestland, and cultivated land) and one soil

variable (clay content)) were selected (Figure 5).

Selection of model parameters

To develop the optimal ENM, we selected the best

combination of FC (H) and BM (=2) out of the192 model

combinations evaluated using the ENMeval package (Figure 6,

Supplementary Table S1). The selected FC and BM

combination resulted in a better prediction potential of the

suitable niches than the default values (Supplementary

Figure S1).

ENM development using selected
predictors and parameters

MaxEnt model was executed with the seven selected

variables and the best combination of FC (Hinge) and BM

(=2) to predict the suitability habitat of each indigenous

chicken population and to identify environmental variables

that define each habitat. To evaluate the model prediction

efficiency, MaxEnt produces different outputs (Figures 7–9).

The AUC values 0.814 and 0.799 for training and test data,

respectively (Figure 7), showed the model’s excellent

prediction power. The AUC values of the individual

populations range from 0.9854 to 0.9981 for the training

sample and from 0.9693 to 0.9946 for the test sample. The

individual variable AUC value also displayed excellent

prediction power (>0.9) except for a few variables across

different populations showing moderate prediction power

(Supplementary Table S3).

FIGURE 7
MaxEnt model based on seven selected variables and the best feature (H) and beta-multiplier value (two). Area Under Receiver Operating Curve
for training and test data.
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The variables’ importance was also checked through the

jackknife tests (Figures 8A,B) for regularized training and test

gains. According to these tests, the variables that contributed

most to the model were bio13, bio5, and bio8. Most of the

selected variables contributed to the overall model

(Figure 8C), except the soil clay content. Moreover, variable

importance was not only evaluated by their contribution to the

prediction power of the model but also their contribution to

the model building (Çoban et al., 2020). Variables that

contributed most to the model were also explained by their

percentages of contribution (>6.9) and their permutation

importance (>9.8 except bio13) (Supplementary Table S2)

with the response curves explaining how the individual

variables affect ENM prediction. The logistic prediction

FIGURE 8
(A) Jackknife result for AUC (Area Under Receiver Operating Curve) (B) Jackknife of training gain and (C) test gain for ENM produced for the
complete set of analyzed populations.
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varied with the individual variable while the other variables

were kept at their average value (Figure 9).

Pairwise comparison of population
models for ecotypes definition

For the ecotype definition, we present two approaches,

pairwise Pearson correlation and niche overlap (Vallejo-

Trujillo et al., 2022). Both methods group the Tigray

indigenous chicken habitats into four agro-ecologies. Twelve

districts out of 16 showed consistent clustering in both

methods. The exceptions are Tselemti, Tahtay Adyabo, Degua

Tembien, and Laelay Maichew. The highest agglomerative

coefficient was obtained with Ward Method of hierarchical

clustering - 0.83 for niche overlap and 0.77 for the Pearson

correlation (Figures 10, 11). Henceforth, it was selected for the

clustering of the Tigray chicken populations.

Besides the above dendrogram and heat map categories, by

considering their Jackknife of AUC and percent of the

contribution, we proposed four agro-ecologies, namely: agro-

ecology 1 - Tselemti, Abergelle, Tahtay Adyabo, and Raya Azebo;

agro-ecology 2 - Welkayt, Tsegedie, and Kafta Humera; agro-

ecology 3 - Tahtay Maichew, Hawzen, Ahferom, and Adwa; and

agro-ecology 4 - Tahtay Maichew, Degua Tembien, Tahtay

Qoraro, Ofla, and Hintalo Wajrat. We also identified the

environmental variables that define each suitable agro-ecology

(Table 3). Following the four distinct chicken agro-ecologies, we

proposed four distinct indigenous chicken ecotypes (Figure 12).

Discussion

We have applied here an ecological niche modelling

approach, using 34 agro-climatic variables. It allowed us to

provide the first detailed environmental characterisation of

Tigrayan chicken habitats, an important premise to define

ecotypes and to study their adaptive diversity, with important

implications for their management, conservation, phenotypic

and genetic characterisation. Besides, we have also provided

FIGURE 9
Individual response curves for seven environmental variables selected for the final Maxent model.
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here the detailed protocols for the application of ENM, that

we expect will facilitate its adoption for the environmental

characterization of livestock population habitats.

Although, some studies have already been undertaken to

define chicken agro-ecological zones in Ethiopia, they did not

represent (Kebede et al., 2021) or poorly represented (Gheyas

et al., 2021; Vallejo-Trujillo et al., 2022) the Tigray region.

Specifically, the studies of Gheyas et al. (2021) and Vallejo-

Trujillo et al. (2022) did not include any population >2,312 m.

a.s.l. And below 1,295 m. a.s.l.

Environmental variable selection and their
contribution to chicken biology

ENM for suitable habitat prediction and potential ecotype

definition require selecting appropriate variables to enhance the

model prediction power. Prior knowledge of the species ecology is

also essential in selecting the correct environmental variables (Zeng

et al., 2016; Fourcade et al., 2018). Besides, the variables must be

related to the life history of the species under study. Previous studies

have emphasized that the variables for ENM must be selected with

great care as they should be uncorrelated and with a high

contribution to the biological need of the species (Reunanen,

2003; Zhu et al., 2012; Sangermano et al., 2015; Pitt et al., 2016).

Removing correlated variables using PCA, correlation matrix, or

any other dimension reduction methods will reduce model

complexity (Merow et al., 2013). Hence, we followed a rigorous

procedure, including PCA, correlation, and MVS, to select the least

correlated variables. The procedures followed and our first-hand

knowledge of the study area and of indigenous chicken helped us to

select the most appropriate variables.

The final set of selected variables are indeed of relevance to

the physiological need of the chicken; bio5 (maximum

temperature of the warmest month) and bio8 (mean

temperature of the wettest quarter) may be associated with

bird thermotolerance - an important phenotype in the Tigray

region where the temperature may fluctuate between 3 and

46°C. Bio13 (precipitation of the wettest month) is linked to

water availability, equally crucial for the physiology of the

FIGURE 10
Dendrogram and heatmap of niche overlap statistics (I) between suitability maps for individual population.
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chicken (Pitt et al., 2016). Cultivated land and soil clay content

are associated with food availability, and grassland and forest

land coverage may be related to scavenging food, predation

exposure and protection (Figure 5) (Gheyas et al., 2021;

Vallejo-Trujillo et al., 2022). Our selected variables

(grassland cover, forest cover, cultivated land, and soil clay

content) aligned with the variables (grassland cover, cultivated

land, crop dominance, and soil organic content) reported

previously in other studies for Ethiopian indigenous

chicken (Gheyas et al., 2021; Vallejo-Trujillo et al., 2022).

The shortlisted climatic variables bio5, bio8, and bio13 based

on MVS are also related to the climatic variables bio6 (minimum

FIGURE 11
Dendrogram and heatmap of pairwise Pearson correlation coefficient between suitability maps for individual population.

TABLE 3 Major contributing agro-ecological variables for each proposed ecotype.

Proposed
ecotypes

Populations Major contributor parameters
among ecotypes (percent
of contribution)

1 Abergelle, Tselemti, Raya Azebo, and Tahtay Adyabo bio5 (39%), Forest (21.4%), Grass_Land (18.8), and Cult_L (17.2%)

2 Welkayt, Kafta Humera, and Tsegedie bio13 (41.9%), Cult_L (26.4%), Soil_Clay (15.9%), bio5 (9%),
bio8 (5.1%)

3 Tahtay Maichew, Hawzien Ahferom, and Adwa bio5 (50.4%), Forest (40.5%), and Cult_L (8.2%)

4 Laelay Maichew, Degua Tembien, Tahtay Qoraro, Ofla, and Hintalo
Wajrat

bio8 (43.4%), Grass_Land (24.8%), Soil_Clay (17.4%), and
Cult_L (5.1%)

Bio5 = Maximum temperature of warmest month; bio8 = Mean temperature of the wettest quarter; bio13 = Precipitation of wettest month; Forest = Forest cover; Soil_Clay = Soil clay

content; Cult_L = land use for agriculture purpose; Grass_Land = Grass/shrub cover.
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temperature of coldest month), bio15 (precipitation seasonality),

bio16 (precipitation of wettest quarter), and bio17 (precipitation

of driest quarter) shortlisted in previous studies (Gheyas et al.,

2021; Vallejo-Trujillo et al., 2022). The variables selected in our

study are also similar to variables (bio5, bio13, soil clay,

grassland, forest land, and cultivated land) reported for the

wild Red junglefowl (Pitt et al., 2016). Pitt et al. (2016)

reported geographic areas suitable to domestic chicken on the

African continent using the environmental information

associated to today’s geographic distribution of the Red

Junglefowl. The Tigray region is one of these regions. Tigray

is also a center of ancient civilization which is geographically

close to Red Sea and ancient commercial maritime routes.

Interestingly, it is in the Tigray region that the early

osteological evidence of domestic chicken have been found on

the African continent (Woldekiros and D’Andrea, 2017).

Ecological nichemodelling procedures for
agro-ecology classification and ecotype
definition

Running MaxEnt with the default “black-box” does not

guarantee an optimal model (Radosavljevic and Anderson,

2014). Instead, it may produce either over-complex or over-

simple models Phillips et al. (2006); Cao et al. (2013); Elith

et al. (2010); Ribeiro et al. (2016); Shcheglovitova and

Anderson (2013), and overall suitability niche output can

vary when applied with default and optimum model

parameters, and attention should be given to the

methodology when using MaxEnt for ENM (Morales et al.,

2017). Hence, to get quality MaxEnt outputs, we need to be

cautious in selecting the two parameters, feature classes and

regularisation multiplier (Warren and Seifert, 2011; Merow

et al., 2013; Morales et al., 2017). While selecting the two

parameters, we should also consider the region’s geographic

boundaries (Merow et al., 2013).

We applied the ENMeval package to choose the best-fit

settings, hinge (H) FC and BM = 2 (Figure 6) to predict

suitable habitats for the studied areas. The selected H feature

uses a linear function in the fitted function to transform the

continuous predictors (environmental variables) to a binary

output, zero below the threshold and one above the threshold

(Elith et al., 2011). Using the H feature class in model

development has numerous advantages: it produces

smooth models, it allows complex relationships to be

modelled in training data, it contributes to model

improvement, it is considered as default by MaxEnt, it is

FIGURE 12
Suitability maps for Tigray chicken populations grouped by ecotype.
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applicable to a small number of sampling sites (minimum 15),

and it may replace the quadratic product, and threshold

features (Phillips and Dudı, 2008; Elith et al., 2010; Merow

et al., 2013). The BM (2) we chose also helped us control the

model complexity by imposing a penalty.

Validation of the developed niches using statistical tests

boosts the biological meaning of the model (Warren and

Seifert, 2011). Therefore, we evaluate the niche similarities of

the indigenous chicken populations using ENMtools by

calculating the niche similarity and correlation between

suitability maps (dendrogram and heat map). Besides the

validation using ENMtools, we considered the Jackknife AUC

and percent of contribution to further confirm the proposed

four agro-ecologies.

As expected, geographically close districts generally

clustered together into the same ENM agro-ecology; e.g.,

agro-ecology 1 Tselemti and Abergelle, agro-ecology

4 Tahtay Qoraro, and Laelay Maichew, and agro-ecology

2 and 3 for the other districts (Figure 12). However, some

districts belong to different agro-ecologies despite being

geographically close (Ofla and Raya Azebo; Ahferom,

Adwa, and Laelay Maichew). The Ofla district belong to

agro-ecology 4 and the Raya Azebo district to agro-ecology

1. Similarly, the Ahferom, Adwa, and Laelay Maichew district

while geographically close displayed minimum niche

overlap. They are classified in different agro-ecologies with

Ahferom and Adwa district included within agro-ecology 1,

and the Laelay Maichew district within agro-ecology 2. It

illustrates the diversity of agro-ecologies found within the

Tigray region, even within a close geographic range.

The occurrence of new habitats due to environmental

change is the main reason for the formation of a “new variety”

(Darwin, 2004) or, in this current context “ecotype”. Darwin

also emphasised that populations that adapt to a new

environment may survive, resulting in the gradual

formation of new species. Transpose to the evolution of

livestock, introducing a population to a novel habitat may

result in new phenotypes following natural selection

(Schluter and Nagel, 1995; Adams and Huntingford, 2004;

Lahti et al., 2009). Accordingly, we propose four potential

Tigrayan chicken ecotypes that may display different chicken

genotypes and phenotypes.

The identification of these four ecotypes may further

guide both genetic improvement and conservation efforts,

maintaining the unique adaptation of the indigenous

populations. Different strategies may be envisaged here.

Within ecotypes productivity improvement may be

envisaged at poultry stations, as it has been the case in

Ethiopia for the Horro chicken (Dana et al., 2011), or

following an open nucleus breeding scheme in-situ at

village level (Gondwe et al., 2001; Okeno et al., 2013).

Alternatively, crossbreeding may be envisaged, for

example, crossing of improved local cocks lines with a

commercial hen (Kgwatalala et al., 2015). The later may

results in immediate productivity improvement, while

keeping local environmental adaptation. A medium to long

term, it will be important to conserve the unique

environmental characteristics of the ecotypes protecting

them, for examples, from the local impact of extreme

climatic events or political instability (e.g., war). It is now

possible to conserve ex-situ in biobank male and female

poultry primordial germ cells (Hu et al., 2022). Ecotype

identification will allow prioritizing the populations to be

conserved by providing entry points for the establishment of

poultry biobanks.

Conclusion

The environment-based characterization of chicken

habitats presented here allowed us to propose four

potential indigenous chicken ecotypes associated with

different environmental variables. Beyond the current

objective, the outcome of this study will guide the

conservation of the endangered indigenous chicken

ecotypes while providing a standardised framework for

new studies on the environmental characterisation of

livestock populations, and its link to phenotypes and

genotypes. Also, the ecological niche modelling approach

describe here may be used to predict future environmental

challenges and distributional shift that indigenous chicken

ecotypes may be facing owing to climate changes.
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