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and Alpine Research, University of Colorado, Boulder, CO, USA; lDepartment of Ecology and Evolutionary Biology, University of
Colorado, Boulder, CO, USA; mInstitute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA 18766,
USA; nSchool of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK; oAgricultural University of Iceland, Árleyni 22, 112
Reykjavík, Iceland; pKBR, Inc., Contractor to the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center,
Sioux Falls, SD 57198, USA; qDepartment of Life and Environmental Sciences, University of Iceland, 102, Reykjavík, Iceland;
rDepartment of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; sDepartment of Biological Sciences,
Florida International University, Miami, FL 33199 USA; tInstitute of Hydrobiology, Biology Centre of the Czech Academy of Sciences,
Na Sadkach 702/7, CZ-37005, Ceske Budejovice, Czech Republic; uBiology and Environmental Science Department, Marietta College,
215 Fifth Street, Marietta, OH, USA; vClimate Change Institute and School of Biology and Ecology, University of Maine, Orono, ME,
04469 USA; wDepartment of Biology, Universitetsparken 15, 2100, Kobenhavn O, Denmark; xWSL Institute for Snow and Avalanche
Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland; yClimate Change, Extremes and Natural Hazards in Alpine Regions
Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland; zFaculty of Natural Sciences, Department of Biological and
Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK

Corresponding author: Robert Hollister (email: hollistr@gvsu.edu)

Abstract
Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment

network in the early 1990s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the im-
pacts of OTCs on the abiotic environment and the biota. Here, we review the impacts of the OTC on the physical environment,
with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this
review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to under-
stand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate
temperature; however, the characteristics and magnitude of warming varies greatly in different environments; therefore, it is
important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term
monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems.

Key words: Arctic, alpine, tundra, warming experiment, large-scale coordinated experiment

Introduction
Warming chambers have been used for many decades to

study the impacts of rising temperature on vegetation. In-

terest in the impacts of warming on natural ecosystems in-
creased greatly in the 1980s as researchers speculated on
the potential effects of climate change across the globe.
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Fig. 1. Photographs of open top chambers. Images are of warming experiments at Utqiaġvik, Alaska USA (upper left, photo
credit: Robert Hollister); Latnja, Sweden (upper right, photo credit: Mario Rudner); Alexandra Fjord, Ellesmere Island Canada
(lower left, photo credit: Cassandra Elphinstone); and Finse, Norway (lower right, photo credit: Kari Klanderud).

Different warming experiment designs have been employed
over time spanning a variety of environmental gradients
(Kennedy 1995; Shaver et al. 2000; Michelsen et al. 2012;
Hanson and Walker 2020). Every warming mechanism has its
own strengths and weaknesses. Open top chambers (OTCs,
Fig. 1) were chosen as the recommended warming mecha-
nism for low growing tundra vegetation by the International
Tundra Experiment (ITEX) network because of their low cost,
easy deployment, and relatively few experimental artifacts
(Molau and Mølgaard 1996; Marion et al. 1997). Currently,
OTCs are widely used in alpine and Arctic locations with
low-stature vegetation (Henry et al. 2022). Many of the re-
searchers using OTCs are members of the ITEX network, but
many are not. While the OTCs are well suited for tundra en-
vironments, particularly at higher latitudes where diurnal
contrasts in warming are small, they have been employed in
other ecosystems with low-stature vegetation such as lower
latitude meadows and peatlands. Over the past three decades,
there have been hundreds of papers that have documented
the impacts of OTCs on the physical environment and the
organisms living in them. Here we review what has been
learned about the impacts of OTCs on the physical environ-
ment and provide commentary on the interpretation of the
biotic response to OTCs.

Diversity of OTCs
While somewhat standardized, the ITEX OTCs are not all

the same and they vary in size from approximately 1 to 2 m2

(Fig. 2). The materials used have varied over time, originally
most of the OTCs deployed in North America were made
of fiberglass, while OTCs deployed in Europe were made of
plexiglass. Although these solid self-supporting materials are
most commonly used, another approach utilized thin plas-
tic wrapped around a solid metal frame (Day et al. 2008),
and another modification is the use of semiflexible mate-
rial wrapped into a cone (Schedlbauer et al. 2018; Parker
et al. 2017, 2022). Other related approaches to experimental
warming in tundra ecosystems have deployed plastic tents or
greenhouses (Chapin and Shaver 1985; Havström et al. 1993;
Wookey et al. 1993), although these do not clearly fall un-
der the definition of OTC so they are not considered directly
here. While there have not been detailed in situ studies of the
difference in building materials, the common assumption is
that the manufacturer’s specifications apply and that most
commercially available building materials for greenhouses
are suitable. The materials are chosen to block wind and al-
low photosynthetically active wavelengths to pass through,
although the various materials differ in their transmission
of solar radiation. OTCs may need to be periodically cleaned
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Fig. 2. Range of design dimensions for most commonly im-
plemented hexagonal open top chambers (redrawn from
Molau and Mølgaard 1996 and Hollister 1998). The size can
vary, the corners are 120◦ angle, and can be braced with a
bracket or the materials can be longer on one side and bent
to a 60◦ angle.

to remove dirt and bird guano. Degradation of the mate-
rials over time is another potential issue, either through
photodegradation, scratches by windblown snow or dust,
or by staining from tannins at sites with periodic standing
water. Different materials likely have different degradation
rates.

Over time there have been a number of suggested improve-
ments to the basic ITEX chamber design. These include in-
creasing the height (Welshofer et al. 2018), addition of water
filled pipes——providing thermal mass——to reduce fluctuations
in the magnitude of heating throughout the day and night
(Godfree et al. 2011), adding heating cables to ensure heat-
ing at low light levels (Sun et al. 2013), or adding small legs
at each corner to allow air exchange (Delarue et al. 2011).
Yet the basic ITEX OTC has remained one of the most com-
monly implemented field manipulations for examining veg-
etation response to warming, and it continues to be used in
many tundra and non-tundra settings (Bokhorst et al. 2007;
Aronson and McNulty 2009; Spence et al. 2014; Pugnaire et al.
2020; Bjorkman et al. 2020).

Physics of OTC warming
During the day, short-wave solar radiation is largely trans-

mitted through the OTC walls, contributing to surface
warming. By contrast, the OTC walls are more opaque to out-
going long-wave radiation, particularly in the infrared range
of the electromagnetic spectrum (>700 nm wavelength), in-
creasing the sensible heat of air inside the OTC. The increase
in temperature is due to the absorption of solar radiation di-
rectly by the plant canopy and other exposed surfaces within
the OTC (soil surface, exposed rock, or standing water) and
the emission of long-wave radiation from these surfaces. The
shape of the OTC was designed to increase the boundary layer
and provide the opportunity for a warm “bubble” of air to de-
velop over the surface, by greatly reducing wind speed and to
reduce the loss of energy from air movement (advection). The
panels also provide shelter from the wind reducing heat loss
by convection, yet the open-top allows air to flow in and out
and small eddies may form.

Because OTC performance varies both temporally and
among locations, we recommend direct measurements of the
physical environment in individual experiments to quantify
net effects. To help understand the source of these variable
impacts, it is useful to review the fundamental physics of
energy balance. The equation for energy balance may be ex-
pressed as follows:

net radiation absorbed (Q∗ ) = evapotranspiration (QLE) + sensible heat flux (QH) + ground heat flux (QG)

+ [net energy flux by advection (QV) + net storage (ΔS)] .

Generally, QV and �S are not included as they are con-
sidered to balance out over time. The OTC warming acts by
blocking the wind and interfering with loss of energy from
the surface through QV. Furthermore, the magnitude of these
flows can then vary between wet and dry surfaces. Taken to-
gether, understanding the physics behind OTC warming can
help understand the complex impacts of OTCs on air, leaf tis-
sue, and soil temperatures (Fig. 3).

The impact of OTCs on humidity varies greatly between
field locations (Sjögersten and Wookey 2002; Bokhorst et al.

2007). It is difficult to predict the impacts of OTCs on humid-
ity without field observations, as humidity depends on veg-
etation, soil properties, and soil moisture, which are linked
with landscape position and lateral movements of soil water.
Plants and soils in the OTCs respond to the vapor pressure
deficit (VPD). In many cases, air VPD increases inside OTCs as
a function of increasing temperature and the subsequent in-
crease in water holding potential of warmer air (Lamentowicz
et al. 2016). In some locations VPD may remain the same or
decrease inside the OTC presumably due to sheltering from
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Fig. 3. Solar radiation and energy balance in and out of the open top chamber (OTC).

dry winds (Dorrepaal et al. 2004). At temperatures lower than
10 ◦C, VPD is generally at levels that do not constrain photo-
synthesis (Supplementary material 1) unless relative humid-
ity is significantly below 50%.

Impacts on air and leaf temperatures
The OTCs provide passive warming; therefore, the magni-

tude of warming can vary greatly between locations (Fig. 4).
Typically, warming is greatest around solar noon on a clear
day with little wind and warming may be negligible when
solar intensity is low (Fig. 5). At night temperatures within
the OTC may also be cooler than outside the OTC due to
radiative heat loss and reduced mixing and exchange with
surrounding air (Dabros et al. 2010). The maximum poten-
tial intensity of warming is greatest near summer solstice,
but in most locations, the variability of warming is more

directly influenced by sky conditions and weather (Fig. 6;
Hollister et al. 2006; Bokhorst et al. 2013; Schedlbauer et al.
2018). The effectiveness of OTCs at increasing air temper-
atures has been shown to be reduced at higher temper-
atures (Carlyle et al. 2011). Therefore, the net effect of
OTCs can also be highly variable across time because the
warming intensity of the OTCs depends on the ambient
climate. This variability may better reflect future climate
change than methods that increase temperature a constant
amount.

Due to the nature of the warming, the daily range of tem-
peratures is significantly greater in the OTC than the nearby
ambient conditions (Fig. 6). This greater range is due to mul-
tiple factors, with the two main factors being reduction of
wind and that the open top allows direct sunlight in part of
the OTC (Hollister 1998). The greater range of temperatures
and the general warming changes the number of freeze thaw
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Fig. 4. The average magnitude of open top chamber warming at Atqasuk, Alaska USA; Latnja, Sweden; Finse, Norway; and
three sites at Alexandra Fjord, Ellesmere Island Canada. The dotted line represents the overall average. The daily course of
warming was compiled for the summer months (June, July, and August) (unpublished data). The smoothness of the curve is a
result of more years of observation (Atqasuk 1998–2021, Latnja 2020–2021, Finse 2019, Alexandra Fjord Cassiope and Willow
2008–2019, and Alexandra Fjord Dryas 2000–2019).

Fig. 5. The course of temperature and relative humidity over representative days in open top chambers (OTCs) (red dashed)
and adjacent control plots (blue solid) (redrawn from Hollister 1998). Note, these readings are from a site with drier soils; in
areas with higher moisture or standing water, relative humidity may be higher inside the OTCs and condensation may form
on the inside of chamber walls (Bjorkman 2015).

events and other extreme temperatures experienced in the
OTC (Bokhorst et al. 2013). The length of the growing season
may be increased due to the warmer temperatures; however,
snow accumulation inside the OTCs may negate the poten-
tial for earlier growth (see the Impacts on snow section) and
the lack of OTC heating at night is likely to negate any differ-

ences in freeze events in the fall despite increasing average
temperatures.

The OTC effect on temperature depends on where the tem-
perature is measured. Warming is greatest near the ground
surface in the center of the plot where direct sunlight enters
the OTC (Hollister 1998); on average, at Northern latitudes,
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Fig. 6. Change in the daily maximum, mean and minimum
temperatures due to open top chamber warming. Points
show average temperature differences from 1994–2018 at
Utqiaġvik, Alaska USA; lines show the 2 week running mean
for minimum (periwinkle), mean (grey) and maximum (ma-
genta) daily temperatures (redrawn from Elmendorf and Hol-
lister 2023).

the Northern half of the chamber warms slightly more than
the Southern half, although throughout the daily cycle
different regions in the chamber will warm more based pri-
marily on what regions receive the most direct sunlight.
Cross-site analyses benefit from standardized measurements.
We therefore recommend studies employing OTCs deploy
temperature sensors in the most commonly used location
to date: halfway between the northernmost edge and cen-
ter of the plot (or southernmost for Southern hemisphere
sites), which will usually capture the largest magnitude of
warming. Similarly, deployment of temperature sensors at
the standardized (10–15 cm) plant height is recommended.
At many sites the ground height is variable and the temper-
ature sensor itself is more than a few cm long; therefore, an
exact location is often not possible. The OTCs’ effect on plant
tissue and leaf surface temperatures have been found to be
higher than the effect on the air temperatures (DeBoeck et al.
2012). The range of surface temperatures is greater within
OTCs than in controls and results in higher maximum tem-
peratures (Fig. 7; Healey et al. 2016; Lindwall et al. 2016) as
well as lower temperatures due to shading (Jónsdóttir et al.
2005; Dabros et al. 2010). Elevated leaf temperatures have im-
portant consequences for plant water status through the in-
crease in leaf to air VPD.

Impacts on snow
OTCs were designed to be installed year-round; however,

many studies remove them in winter. In locations where
the snowpack is lower than the height of the OTC, espe-
cially windswept regions with minimal snow cover, snow
is trapped inside the OTCs and may accumulate; neverthe-
less, the warmer temperatures inside the OTCs tend to melt
snow faster than the surrounding (Marion et al. 1997). How-
ever, without empirical evidence it is difficult to determine
when snowmelt will occur within the OTC relative to the

Fig. 7. Range of surface temperature observed by infrared
photography of open top chamber (open red bars) and control
(solid blue bars) plots (redrawn from Healey et al. 2016). The
histogram represents surface temperatures observed in the
Utqiaġvik dry plots near mid-day on 4 August 2014; the spatial
resolution was approximately 3 mm2.

surroundings. At Alexandra Fiord (Ellesmere Island, Canada)
and Finse (Norway), the combined effect of accumulated snow
and warmer temperatures resulted in similar meltout days
within the OTCs and ambient plots (Bjorkman et al. 2015;
Klanderud personal observation). In sites with deeper snow
inside the OTC, the soils under the OTC are more insulated
from cold winter air and the soils are warmer during the
winter compared to the ambient plots (Bokhorst et al. 2013;
Bjorkman et al. 2015). The impacts of snow can be large
and may vary greatly throughout the year and between years
(Fig. 8). Greater snow accumulation in the OTCs has also the
potential to increase water availability and nutrients, similar
to snowfence manipulations (Rixen et al. 2022).

Impacts on soils and belowground properties
The impact of OTCs on soils varies greatly between loca-

tions and may result in higher soil temperatures within OTCs
(Marion et al. 1997; Klanderud and Totland 2005; Bokhorst
et al. 2013) as well as a cooling of the soil due to shading
(Jónsdóttir et al. 2005; Dabros et al. 2010; Hollister et al. 2006;
Dabros et al. 2010; Bokhorst et al. 2013), while some sites
show no effect on soil temperatures (Hollister et al. 2006;
Delarue et al. 2011; Buttler et al. 2015; Ma et al. 2022a). The
impact on soil temperatures is complex, while air warming
generally results in soil warming, reduced direct sunlight due
to shading may offset increased air temperatures and the net
result may be lower heat inputs into the soil, especially in
landscapes with bare ground (see the Physics of OTC warm-
ing and Impacts on air and leaf temperatures sections). Cool-
ing of the soil surface may be due to shading by the chamber
walls or denser plant canopies reducing incoming radiation
reaching the soil surface and thus reducing the warming ef-
fect (Klanderud and Totland 2005). It is also possible that veg-
etation changes inside the OTCs can impact the transfer of
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Fig. 8. Warming effect of the open top chambers (OTCs) (rel-
ative to control plots) at Atqasuk, Alaska USA and three sites
at Alexandra Fjord, Ellesmere Island Canada. Lines represent
the average daily temperature difference (OTC minus control)
of each year, the thick blue line is a GAM-smoothed curve for
the mean temperature difference across all years. Air temper-
atures were measured at a height of 10–15 cm. The OTCs are
installed for the summer only at Atqasuk and remain in place
year-round at Alexandra Fjord (redrawn from Bjorkman 2015
for the Dryas site and unpublished data compiled according
to the methods in Bjorkman 2015); therefore, differences in
air temperature above or within the snowpack during the
winter at Atqasuk are due to differences in snow properties
which vary greatly between years. At Alexandra Fjord, OTC
impacts on above ground temperature greatly across the year
and are greatest during the winter due to the insulative prop-
erties of the changed snow regimes.

heat from the air to the soil, similar to what has been sug-
gested for shrubs (Blok et al. 2010), in particular a thicker
moss layer may insulate the soil from ambient temperatures
and incoming radiation (Lett et al. 2020). Furthermore, the
lateral movement of soil water from outside the OTCs can
negate any potential soil warming in moist, wet and flooded
sites (Natali et al. 2011; Lindwall et al. 2016). The magnitude
of difference may vary greatly throughout the year, for ex-
ample, see differences in air temperature which may drive
soil temperature (Fig. 8). While only a few OTC experiments
have measured soil warming at depths of, or greater than,
20 cm (but see Hollister et al. 2006; Yang et al. 2015), it is gen-
erally assumed that warming effects diminish at greater soil
depths due to the small size of the OTC and the hysteresis of
surrounding soils. For this reason, soil temperature should
be measured near the center of the plot. Warmer soils has
resulted in increased depth of seasonal thaw under OTCs in
Alaska (Welker et al. 2004; Hollister et al. 2006); increased
thaw depth is particularly evident early in the season but may
be swamped by the spatial diversity of thaw across the land-
scape (see Hinkel and Nelson 2003).

The OTCs tend to decrease soil moisture in drier sites, espe-
cially at the surface (Sjögersten and Wookey 2002; Bokhorst
et al. 2013; van Zuijlen et al. 2022; Björnsdóttir et al. 2022;
Jeanbille et al. 2022), although the effect is often not statis-
tically significant and varies greatly depending on the soil
moisture of the surroundings. However, in dry communities,
a minor lowering in soil moisture near the surface may be
enough to constrain plant performance (Hudson and Henry
2010; Dorji et al. 2013; Hollister et al. 2015). In moist and wet
communities, the impact of the OTCs on soil moisture is of-
ten negligible (Hollister et al. 2006; Bernareggi et al. 2015),
yet wet communities have also experienced drying in the
OTCs (Scharn et al. 2021). Measurements of bare ground have
shown increased soil moisture in OTCs due to reduced losses
of soil water to the atmosphere (evaporation) as a result of
reduced wind speed (Bernareggi et al. 2015; D’Imperio et al.
2017). It is also possible that changes in plant biomass may
result in changes in evapotranspiration and soil moisture.
Jeanbille et al. (2022) found decreased water content of the
litter inside OTCs in some sites, whereas in other sites lit-
ter water content was higher in OTCs than in controls. In
Latnjajare (Sweden), the OTCs are deployed over five plant
communities following a soil moisture gradient (Scharn et al.
2021); here, only the warmed meadow (not heath) plots had
a lower soil moisture content compared to ambient condi-
tions. In particular for the dry and mesic meadow plots, the
timing and magnitude of snowmelt drove the soil moisture
differences between warmed and ambient plots (Scharn et al.
2021).

Studies on soil processes and the microbial communi-
ties have often found few direct impacts of the OTC (Lamb
et al. 2011; Andresen et al. 2022; Jeanbille et al. 2022); how-
ever, there have been several studies that have documented
changes in the microbial communities and soil processes in
peatlands outside the tundra (Jassey et al. 2015; Delarue et al.
2015; Binet et al. 2017). The lack of a response in tundra is no-
table, given that warming has been shown to impact the qual-
ity of litter and thereby nutrient cycling (Cornelissen et al.
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2007; Jeanbille et al. 2022) and impact the soil fauna (Dollery
et al. 2006; Hågvar and Klanderud 2009). The reasons for a
lack of response are unclear, but are likely due to the rela-
tively low warming impact on soil temperatures, which de-
creases with depth, and may be masked by the heterogeneity
of soils and vegetation. Furthermore, the rooting zones of the
plants are likely to extend well beyond the chamber walls
especially for plants with long rhizomes and underground
stems, and below ground plant biomass has been shown to
be less responsive to temperature than above ground biomass
(Wang et al. 2016; Ma et al. 2022a, 2022b). Nevertheless, a few
studies have shown earlier root growth (Sullivan and Welker
2005) and changing allocation patterns in response to warm-
ing (Björk et al. 2007; Hollister and Flaherty 2010; Yang et al.
2011).

Impacts on vegetation
The impacts of warming on tundra vegetation are the pri-

mary focus of the ITEX network and as such is described else-
where; see Henry et al. 2022, this issue, for a review of OTC
impacts on community composition, plant performance and
carbon cycling. Here we focus on the robustness of using
observations from the experimental manipulation to guide
forecasts of vegetation change due to regional climate warm-
ing. Several studies have compared the response of plants in
OTCs to that of a warmer year and in many cases found sim-
ilar responses (Hollister and Webber 2000; Elmendorf et al.
2015; Bjorkman et al. 2020). Thawing degree days (daily tem-
peratures above the lower threshold of 0 ◦C summed daily)
have been shown to provide a reasonable prediction of plant
responses irrespective of warming treatment (Hollister et al.
2005a), this is for instance true for inflorescence length of
Carex aquatilis in Northern Alaska (Fig. 9). Comparisons of veg-
etation change due to warming by OTCs show similar pat-
terns to regional warming and climate warming (Hollister
et al. 2015; Elmendorf et al. 2015; Bjorkman et al. 2020). How-
ever, phenological development in OTCs has been shown to
not advance as much as would be expected based on air tem-
peratures (Hollister et al. 2005a; Oberbauer et al. 2013; Parker
et al. 2017, 2022). Warming experiments across all biomes
have been shown to under-predict phenological advance due
to regional climate warming (Wolkovich et al. 2012). There
is also evidence that OTC response may vary greatly depend-
ing on the season and year, these differences can be due to
moisture available (Delarue et al. 2015; Jassey and Signarieux
2019), the responsiveness of plants has also been shown to
be less during a warm year relative to a cold year (Barrett and
Hollister 2016; Carbognani et al. 2016; but see Collins et al.
2021).

The explanation(s) for the differences between response
to experimental warming and regional climate warming is
not fully understood and there are likely a suite of reasons
that vary between locations and species. Examining the dif-
ferences between responses may further our understanding
of the underlying mechanisms driving response to tempera-
ture. For example, the OTCs reduce wind, and sheltering from
the wind can in itself drive vegetation change (Fitzgerald and
Kirkpatrick 2017; Momberg et al. 2021). Also, the walls of the
chambers may constrain seed rain and colonization of new

Fig. 9. Inflorescence length of Carex aquatilis measured at
the end of the summer at Atqasuk (triangles) and Utqiaġvik
(squares) in OTCs (open red symbols) and ambient plots
(closed blue symbols) graphed against thawing degree days
measured from snowmelt until 15 August (redrawn and ex-
tended from Hollister et al. 2005a).

species, which may protect plants inside the OTCs from in-
teractions with new immigrants (Yang et al. 2018).

The magnitude and quality of OTC warming may be signifi-
cantly different from the warming experienced from climate
change. The magnitude and timing of OTC warming varies
by location and is generally on average less than 2 ◦C, this is
a modest magnitude or warming that is less than some re-
gions have already experienced due to climate change (IPCC
2022). The maximum temperatures experienced in warming
experiments (including OTCs) may be outside the range nor-
mally experienced and the response to warming may dimin-
ish if the temperature optimum is exceeded (Elmendorf and
Hollister 2023), it is possible that the maximum tempera-
tures may negatively impact performance (Marchand et al.
2005; Shi et al. 2010). The potential decoupling of air and soil
warming due to OTCs described above (see the Impacts on
soils and belowground properties section) may also impact
plant performance. The reduction of incoming photosynthet-
ically active radiation (PAR) and other wavelengths relevant
for plant development, such as far-red and ultraviolet radi-
ation, varies within the OTC. Few studies report radiation
measurements along with results from OTCs even though the
reduced radiation and altered spectral composition, espe-
cially near the chamber walls, may impact plant production
and change plant morphology in ways similar to shade exper-
iments (May et al. 2022). Reductions of photosynthetic pho-
ton flux density as high as 16%–25% have been documented,
the OTCs reduce light most when the sun is at a low angle,
yet the open top allows direct sunlight and reductions are
near zero at solar noon especially at lower latitude (Bokhorst

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

ST
IR

L
IN

G
 o

n 
11

/2
7/

24

http://dx.doi.org/10.1139/AS-2022-0030


Canadian Science Publishing

Arctic Science 9: 331–344 (2023) | dx.doi.org/10.1139/AS-2022-0030 339

et al. 2007; Lindwall et al. 2016; Schollert et al. 2017). It is also
reasonable to assume that the vegetation response to warm-
ing may have built in lags and that the short-term response
may be different from the long-term impacts (Hollister et al.
2005b; Rozema et al. 2009).

Cryptogam responses can vary greatly to OTC warming,
with a dominant role for competition for light between cryp-
togams and vascular plants (Klanderud and Totland 2005;
Wahren et al. 2005; Walker et al. 2006; Cornelissen et al.
2001; Day et al. 2008). In the few studied sites where mosses
and lichens dominated, responses were highly species spe-
cific (Keuper et al. 2011; Dorrepaal 2007; Bokhorst et al. 2015,
2016). Moreover, this relationship can even be inverted in
some habitats, for example, in Sphagnum dominated peat-
lands (Dorrepaal et al. 2006), often as a result of Sphagnum be-
ing a stronger competitor for nitrogen (Heijmans et al. 2002).
Future studies may consider a specific focus on cryptogam
communities with little to no vascular plants to better un-
derstand the moss and lichen response to climate warming
without the influence of faster growing vascular plants.

Impacts on herbivores and pollinators
The impacts of OTCs on herbivores depend greatly on the

species of interest. Large herbivores have often avoided OTCs,
although reindeer have been seen to lean in and graze the
plants within (personal observation IS Jónsdóttir at Endalen,
Svalbard; EJ Cooper at Adventdalen and Ny Ålesund, Sval-
bard; RG Björk at Latnjajaure, Sweden). The presence of large
herbivores can affect the outcome of passive warming from
OTCs on plant communities. In West Greenland, herbivory
by caribou and muskoxen has been observed to differentially
influence the biomass response of plant functional groups
to OTC-induced warming (Post and Pedersen 2008). After 7
years of study, grazed plots showed higher plant community
stability and species diversity than ungrazed plots receiving
the same warming treatment. The greater stability of grazed
plots has been interpreted as the result of herbivore biomass
exploitation mediating the effect of interspecific competi-
tion, which increases with warmer temperatures (Post 2013).
The presence of small mammals such as lemmings and voles
is patchy, although anecdotal evidence suggests that they
may shelter in the OTCs. At Alexandra Fiord, OTCs were of-
ten covered with a screen to keep song birds from perch-
ing on the chamber walls and providing unwanted nutrient
inputs and decimating the seed production. Juvenile snowy
owls have also been observed to shelter in the OTCs on cool
windy days.

Observations of insects are complex; for some species the
chamber walls provide a deterrent, while other species seek
out the chambers for shelter. Once in an OTC, activity is
greater due to the lack of wind and warmer air tempera-
tures (e.g., Gillespie et al. 2013; Birkemoe et al. 2016). Obser-
vations at Alexandra Fiord showed no impact of the OTC on
insect pollination nor on wind pollinated species (Robinson
and Henry 2018) whereas other sites have shown indications
of potential pollen limitations in OTCs (Jones et al. 1997;
Molau and Shaver 1997; Totland and Alatalo 2002; Totland
and Eide 1999). OTCs have been used to demonstrate the link

between timing of flowering and pollination in the High Arc-
tic (Gillespie et al. 2016; Gillespie and Cooper 2022).

Items to consider
Robotic tram systems in close proximity to OTCs can

provide continuous objective measurements of fundamen-
tal micrometeorological conditions present as well as bio-
physical properties of vegetation represented in nearby OTCs
(Healey et al. 2014). Such implementations may help under-
stand the different processes occurring at different scales
across the heterogeneous landscape. Similarly, handheld in-
strumentation has also provided analysis of unique spectral
characteristics linked with growth, development and phe-
nology that are undetectable to the human eye (May et al.
2020). Our understanding of physiological impacts induced
by OTCs has also been enhanced using thermal imaging
technology (Healey et al. 2016). Surface tissue and under-
lying soil or moss temperatures are key determinants of
metabolic activity and monitoring such phenomena is vital
for comprehensive analysis of subtle, yet complex, interac-
tions among permafrost, surface moss, cryptogamic crusts
and soils, and tundra vegetation. Given the many factors
and potential interactions between factors, we believe the
use of OTCs is most effective when coupled with long-term
monitoring.

As with any long-term experiment, it is important to clearly
mark the plots with permanent robust markers and the cor-
responding precise GPS locations. Markers may include an-
chors that serve to retain the OTCs in position during high
winds that occur at many study sites. How the OTCs are
secured will depend on the location and the monitoring
techniques deployed. Sometimes removal of the OTCs is
desirable or necessary to facilitate measurement of the
properties within. For example, measurement of vegetation
solar spectral reflectance within the OTCs requires removal
of the OTCs because of changes in the spectrum and amount
of light transmitted through the chamber walls. Measure-
ments of ecosystem trace gas fluxes within the OTCs creates
a dilemma, should measurements be taken with the OTCs in
place or with them removed. Measurements taken with the
OTCs in place reflect the vegetation performance within the
OTC environment that might include higher air and soil tem-
peratures and lower light, while in cases where the focus is
the vegetation potential it is preferable to remove the OTC to
measure plant performance under the same environmental
conditions.

While most experiments using OTC leave the OTCs in place
year-round, many others remove them during the winter. It
may be useful to deploy the OTCs during specific times of the
year to ask specific questions. For example, Gehrman et al.
(2022) deployed OTCs for late summer only use. Given that
autumn is the season most neglected by summer-visiting
researchers, autumn studies could help elucidate ecologi-
cal activity and thermal sensitivities during the end of the
growing season and during the onset of winter dormancy.
However, there are caveats here related to the potential
warming performance of OTCs at lower solar angles and
shorter day lengths as the autumnal equinox approaches.
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Finally, recent attempts have been made to scale up plot-
level observations from OTCs to biome-wide analyses using
aerial or spaceborne observations (Westergaard-Nielsen et al.
2021). Therefore, it is important to clearly document the char-
acteristics of the study site within the heterogeneity of the
landscape and region to allow for comparison across sites and
scaling of observations. The continued inclusion of remote
sensing observations at a variety of scales will improve future
monitoring of tundra plant responses to warming scenarios
that have been projected to occur with climate change.

Recommendations and concluding remarks
It is important to document the impacts of the OTC on

the physical environment at each study site. We have shown
above that the impacts of OTCs vary greatly between loca-
tions in ways that are difficult to predict without empiri-
cal observations. Therefore, any observed biological response
must be coupled with a clear understanding of the changes to
the physical environment, including measurements at stan-
dardized locations throughout the season.

The OTC is a cost-effective robust method of in situ warm-
ing of ecosystems with low stature plants such as tundra
environments. The response of tundra vegetation to OTC
warming has been shown to be similar to that of interannual
variability and latitudinal gradients (Elmendorf et al. 2015).
However, as with any experimental manipulation, there are
artifacts that may be problematic depending on the situa-
tion (Ettinger et al. 2019; Kimmel et al. 2021). The OTC may
or may not provide a reasonable approximation of regional
climate warming depending on the application. For exam-
ple, the increased daily range of temperatures may be unre-
alistic, likewise air and soil warming may be decoupled. In
many cases properly documenting the magnitude of warm-
ing both above-ground and below-ground may be enough to
properly interpret the observations that the experiment was
intended to examine. In other cases, it may be important to
document other physical factors such as plant surface tem-
peratures, PAR, wind speed, snow accumulation, nutrient in-
puts, or soil moisture. It may also be important to account
for differences in herbivory or pollination. The small scale of
the OTC makes it poorly suited to examine landscape dynam-
ics such as permafrost degradation and changing migration
patterns (Hegland et al. 2009; Post et al. 2009). Conversely,
the small scale confers the advantage that OTCs can be de-
ployed in contrasting landscape contexts, refining the pro-
cess understanding necessary to underpin up-scaling such as
interactions between microbes and plants (Jassey et al. 2015;
Jeanbille et al. 2022; Klarenberg et al. 2022). Furthermore, the
OTC does not require electricity and can be placed in remote
locations.

In general, we recommend using the findings from OTC in
conjunction with those of multiple years of observation. If
the same patterns are observed in a warm year at ambient
plot as observed in a warmed plot in a colder year, then the
difference between warmed and control plot is mostly likely
due primarily to temperature (Hollister et al. 2005a, 2005b;
Hollister et al. 2015). In cases where the response to experi-
mental warming and regional climate change are different,

then the experiment may help elucidate biological processes
that better our understanding of temperature relationships.
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