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Integrating spare part inventory management and predictive maintenance as a digital supply chain 

solution 

 

ABSTRACT 

Purpose – The present study aims to assess the feasibility and effectiveness of incorporating predictive maintenance 

(PdM) into existing practices of spare part inventory management and pinpoint the barriers and identify economic values 

for such integration within the supply chain (SC).  

Design/methodology/approach - A two-staged embedded multiple case study with multi-method data collection and a 

combined discrete/continuous simulation were conducted to diagnose obstacles and recommend a potential solution.  

Findings - Several major organisational, infrastructure and cultural obstacles were revealed and an optimum scenario 

for the integration of spare part inventory management with PdM was recommended. Practical implications - The 

proposed solution can significantly decrease the inventory and SC costs as well as machinery downtimes through 

minimising unplanned maintenance and address shortage of spare parts.  

Originality- This is the first study with the best of our knowledge that offers further insights for practitioners in the 

Industry 4.0 (I4.0) era looking into embarking on digital integration of PdM and spare part inventory management as an 

efficient and resilient SC practice for the automotive sector by providing empirical evidence. 

Keywords – Inventory Management, Supply Chain Management, simulation, Procurement, Artificial 

Intelligence, Predictive Maintenance 

 

1. Introduction 

    Despite the substantial advancements in research, practice and technology, the automotive supply chain (ASC) is still 

under a significant pressure to achieve higher efficiency and effectiveness (Balakrishnan and Ramanathan, 2021; Yang 

et al., 2024). Spare parts management plays a critical role in achieving such a goal as it is responsible for ordering and 

maintaining an adequate number of spare parts to improve mean times between system failures and reduce the associated 

costs and delays across the repair-and-reliability value chain (Hasan et al., 2020). The shortage of critical spare parts 

can have serious repercussions for operations continuity and working time of machines which would eventually curtail 

the company’s profit (Mecheter et al., 2023). Wallin Blair et al. (2020) reported that 20-50% of all purchases (by value) 

in the manufacturing sector relate to spare parts for maintenance, repair, and operations, in which they account for 70-

90% of purchase orders, shipment, inventory expenses, and processed invoices. Nonetheless, there are still many 

shortfalls in the ASC resilience in terms of forecasting the failure rates of machinery components and maintaining 



optimal levels of spare parts inventory (Balakrishnan and Ramanathan, 2021). Accurate planning for availability of 

spare parts and their replenishment for unexpected breakdowns is of paramount criticality to avoid downtimes and 

associated costs (Zhu et al., 2022; Eslami et al., 2023). Currently, lack of a centralised on-demand SC system and 

remarkably inefficient human-driven reactive maintenance strategies are resulting in significant machine downtimes 

which increases production costs (Aransyah et al., 2020; Balakrishnan and Ramanathan, 2021).  

     Ample evidence provided by SC and procurement managers manifests the pivotal role of digitalised inventory 

management for high value, high variety, and low volume spare parts to reduce total SC cost through a more efficient 

and effective ordering system (Ho et al., 2021; Herold et al., 2023). This means digitalised inventory management 

happens through utilising technologies such as blockchain to improve visibility alongside other technologies such as 

machine learning to improve inventory prediction that ultimately they lead into enhancing SC cost efficiency in the 

spares part inventory management (Ho et al., 2021). As a result, the importance of integrating predictive maintenance 

(PdM) into established digital tools and technologies in spare part SC and inventory has been recently highlighted to 

reduce the SC and inventory costs in the automotive manufacturing sector (Calatayud et al., 2019; Carvalho et al., 2019; 

and Kovács et al., 2020). Nevertheless, the evidence base in the literature and practice remains scarce regarding this 

integration for spare part inventory management within ASC, and cost-benefit analysis remains to be developed 

(Calatayud et al., 2019 and Kovács et al., 2020; İfraz et al., 2024). Insufficient investigation of practical implications 

such as obstacles and economic benefits prior to the digital integration of spare parts inventory management with PdM 

appears as a research gap and calls for further investigations (Kovács et al., 2020). Further evidence will shed light on 

the practical implications of such a digital integration and provide insights for coupling upstream ordering system with 

the PdM initiatives within manufacturing processes. Our findings have strong contribution into visionary leadership of 

organisations in the manufacturing SC for better collaborative decision making by triggering necessary investigation 

into digitalisation of the spare parts SC like consumable goods SC for better visibility, efficiency and environmental 

sustainability. This will initiate more research avenues for the scholars to develop our study further through different 

case studies in collaboration with the industry.  

     Our study distinguishes itself from the extant literature by assessing the feasibility of deploying digital and analytical 

tools within the ASC and predicting demand (i.e., through PdM) and quantifying its impact on manufacturing efficiency 

(i.e., machine downtimes). The two-fold aim of this study, therefore, is to explore the practical obstacles and reliably 

quantify the economic value of integrating PdM with spare part inventory management as part of an industry-specific 

SC (i.e., the UK ASC). Thus, this research aims to address two research questions (RQs) as follows: 



RQ1 - What are the obstacles in the current spare part inventory management and maintenance processes in a typical 

ASC that can hinder the integration of PdM and spare parts inventory management? 

RQ2 – What is the potential economic value of integrating spare parts inventory management and PdM in ASC? 

     Hence, the key objectives of this study are as follows: i) to identify key practical obstacles in the maintenance 

practices of car manufacturers through participant observation, process mapping and analysis; ii) to ascertain key 

practical pain points (challenges) for SC solution and digital PdM providers through expert panel discussions; iii) to 

present the most ideal scenario with potentially highest economic values by running a combined discrete/continuous 

simulation. Answering RQ1 can offer valuable insights into embracing and embarking on digital SC transformation by 

focusing on upstream ordering and inventory management that has been under less attention by scholars (Eslami et al., 

2023). Although the primary focus of this study was placed on car manufacturing industry, our findings for reducing 

unplanned downtimes can be generalised to other sectors that use manufacturing machines.  

     The rest of this paper is organised as follows: Section 2 includes a critical literature review to develop a knowledge 

and theoretical framework for studying a digital SC coupled with PdM. This is followed by the methodological 

discussions in section 3 revolving around the research design and approaches to address the research objectives through 

multiple case studies. The findings including the identified key paint points and estimated value of the best simulated 

scenario are presented in Section 4. Section 5 discusses the theoretical contributions and practical implications of the 

proposed solution. Finally, the conclusions and recommended directions for future research are presented in Section 6.  

2. Literature Review 

    The notion of diagnosis and prognosis in maintenance of mechanical systems has been an active field of research for 

several decades and still it is attracting attention (Li et al., 2017; Maurya et al., 2024). However, due to uncertainties 

and multiplicity of variables, decision making and inventory planning for effective and efficient maintenance still entail 

several challenges. The uncertainties over the failure rates and patterns of component failure for novel technologies can 

be even more profound. Whilst inventory control of different spare parts may happen independently, the spare part 

inventory decision-making becomes inter-dependent as a consequence of one part being out of stock can depend on the 

availability of other parts (Zhu et al., 2022). In addition, insufficient failure data (Aivaliotis et al., 2021), absence of 

reliable protocols for exchanging data (Hasan et al., 2020), and lack of tailored analytical basis (Peruzzini and 

Stjepandić, 2018) can adversely affect the availability of spare parts. Unplanned downtimes (Yan et al., 2017; Bousdekis 

et al., 2019), secondary damage, long delivery lead-times (Yan et al., 2017; Bousdekis et al., 2019), redundancy (Li et 

al., 2017; Balakrishnan and Ramanathan, 2021), over-maintenance and obsolescence (Shi and Liu, 2020) are amongst 

the main consequences reported in the literature. These repercussions can further result in increased cost and time of 



manufacturing, degraded quality of products and affect the relationship with customers which subsequently threaten 

total return on investment (ROI). 

2.1. The advantages of I4.0 technologies for enhancing PdM and SC performance 

Implementing PdM for industrial robots and machines is inherently a challenging task (Aivaliotis et al., 2021). On the 

other hand, the diffusion of I4.0 across the manufacturing sector as well as enhancements in disruptive technologies 

(e.g., sensory, big data and Artificial Intelligence) and infrastructure (e.g., communication and data centres) offer a 

significant potential to broaden the range of feasible solutions and replace the traditional practices (Dubey et al., 2020; 

Balakrishnan and Ramanathan, 2021; Sharma et al., 2022; Eslami et al., 2023; Samani and Saghafi, 2024). Meanwhile, 

adoption and integration of disruptive technologies introduced by I4.0 carries its new challenges (Olsen and Tomlin, 

2020; Queiroz et al., 2021; Tortorella et al., 2024). I4.0 entails not only technical aspects, but also a sociotechnical 

perspective, including technology, environment, organisation and humans (Hobscheidt et al., 2020). Therefore, a 

comprehensive analysis for identifying obstacles in the way of integrating PdM and spare parts inventory management 

within the SC needs to comprise factors from all the specified spheres above.  

     Wide range of sensors together with analytical algorithms can develop complex predictive tools for monitoring 

network asset performance (Golightly et al., 2018). Data-driven approaches towards condition monitoring of industrial 

robots have been proven to be effective means in detecting anomalies (Aivaliotis et al., 2021). Indispensable elements 

in SC, such as manufacturing and transport, are also rapidly and extensively turning into data-driven tools for 

management and maintenance of modern assets. Despite the capabilities and tremendous potentials, incorporation of 

the technology and analytical tools faces organisational, technical, and human hurdles that can compromise the pledged 

benefits (Golightly et al., 2018). A production system cannot be studied as an individual entity only, but rather as an 

organisation of people and decision makers (Sony and Naik, 2020). This necessitates setting up a theoretical framework 

that accounts for influential factors and variables across the above domains and allow for interdisciplinary exploration. 

     Balakrishnan and Ramanathan (2021) investigated the impacts of digitalisation of SC on resilience within the 

automotive sector. Digitalisation in this context refers to the implementation and impact of adopting digital technologies 

on organisational and societal performance of a firm (Queiroz et al., 2021). Their analysis shows that the integration of 

digital technologies and solutions into the SC improves resilience and performance (Balakrishnan and Ramanathan, 

2021). Those findings are consistent with the work of Sharma et al. (2022) and Eslami et al. (2023). In addition, Carvalho 

et al. (2019) conducted a systematic literature review on the applications of machine learning (ML) techniques in PdM 

in the I4.0 era and advocated that coupling PdM and ML can bring about economic benefits for manufacturers and 

service providers. Also, Li et al. (2017) studied how data mining (DM) and ML can contribute to fault diagnosis and 



prognosis in machine centres, and they proposed a framework that contained the whole fault analysis processes from 

data acquisition through sensors to maintenance schedule optimisation.  

     Furthermore, Yan et al. (2017) explored the implications of big data processing-based PdM within the context of I4.0 

and identified ten different sources of data at technical, operator, organisational and environmental levels that constitute 

industrial big data. Their discussions indicate that multisource heterogeneous data can further improve PdM practices. 

In a recent systematic literature review by Perano et al. (2023), Artificial Intelligence (AI), blockchain, and Internet of 

Things (IoT) were found to be among the dominant technologies to digitalise SC and inventory management. Andersson 

and Jonsson (2018) investigated how product-in-use or consumable data can be applied to address the problem of spare 

parts forecasting for automotive aftermarket services. Their findings suggest that causal-based forecasting strategies can 

effectively improve the demand planning for low-frequency spare parts. The application of blockchain in SC practices 

has recently gained momentum (Hasan et al., 2020; Sony and Naik, 2020; Qader et al., 2022). Wamba and Queiroz 

(2022) looked into the diffusion of blockchain and its capacity for transforming SC relationships and underlined 

‘information sharing amongst SC parties’ as a major advantage of that cutting-edge technology. Nevertheless, there 

remains several gaps to be addressed. For instance, the impact of digitalisation on SC sustainability and carbon emissions 

as well as economic gains for manufacturers need in-depth analysis (Kovács et al., 2020).  

2.2. A socio-technical approach towards ASC 

    One of the main contributors to the complexity of a general supply network is lack of transparency in decision making 

hierarchy (de Kok and Fransoo, 2003). This can be even exacerbated when an organisation expands and in consequence 

its hierarchy, operational activities and technological developments become even more interdependent (Pereira et al., 

2021). This can vividly demonstrate the important role of humans and organisational structure/culture in a socio-

technical system or entity such as a manufacturing firm (Bortolotti et al., 2015; Cadden et al., 2021). Therefore, inclusion 

of human and organisational factors can broaden the scope for identification of obstacles across the ASC. To this end, 

a socio-technical theory approach was adopted to identify the obstacles in the studied SCs and assess the organisational 

capabilities in integrating spare part inventory management with PdM. 

     The socio-technical system philosophy concerns with the integration between machine, or in a broader term 

technology, and humans in designing operational processes and/or systems (Sony and Naik, 2020). The concept of the 

socio-technical system emphasises the bilateral interactions between humans and machines to foster both efficiency and 

labour capabilities in a way that they do not contradict each other (Geddes, 2021). Apart from technological/technical, 

organisational and human factors that can affect productivity and efficiency of a socio-technical system, environmental 

dynamism (ED) is recognised as a core element in dynamic capabilities (DC) theory (Dubey et al., 2020; Herold et al., 



2023). ED is mainly driven by unpredictability and lack of failure patterns (Zimmermann et al., 2020). DC in this context 

refer to an organisation’s ability to develop, structure, reconfigure and integrate internal and external 

competencies/capacities to operate in a dynamic, uncertain, and volatile environment (Eslami et al., 2021). The inclusion 

of ED here is because the operational performances stemming from organisational capabilities can be influenced by the 

dynamic nature of an enterprise's external environment (Pfaff, 2023).  

    The SC of a manufacturing firm extends to its environment and plays a crucial role in the firm's operations since 

external uncertainties can propagate across the organisation through the SC (Shan et al., 2021). The semiconductor 

shortage in 2021 which impacted several industries including automaking perfectly exemplifies the notion of risk 

propagation through and beyond a supply chain (Ramani et al., 2022). This approach remains consistent with the 

technology-organisation-environment (TOE) framework which provides a useful lens for investigating the adoption and 

diffusion of technology and innovation (Al Hadwer et al., 2021). Moreover, organisations that effectively promote 

collaboration within a firm’s supply network gain advantage for enhancing and implementing lean operations more 

successfully (Farajpour et al., 2022). Bortolotti, et al., (2015) maintained that customer-supplier collaboration is critical 

to tackle quality and delivery problems in SC and flourish lean production. 

2.3. Transformation of organisational capabilities through digitalising SC  

     The emergence of I4.0 has drawn the attention of scholars and practitioners to redefine organisational capabilities 

and deploy them to upgrade organisational performance (Münch et al., 2022). Big data and the combination of physical 

and virtual systems are two prominent facets of I4.0 (Sony and Naik, 2020; Ulhe et al., 2023). Dubey et al. (2020) and 

Belhadi et al. (2024) reported that different parts of SCs are increasingly becoming digitalised and a sheer volume of 

data is now being generated as a result. An immediate benefit of SC and inventory management digitalisation will be 

providing a ground for applying predictive analytics (Dubey et al., 2020; Kumari and Kulkarni, 2022) and subsequently 

overcome the challenges of implementing PdM. Other than manufacturing, the consolidated IoT applications with cloud-

based computing and big data analytics are becoming popular in healthcare, transportation, retail, agriculture, and 

education where non-technological levers also influence the adoption of those technologies (Al Hadwer et al., 2021). 

Utilising state-of-the-art analytics and big data tools enables companies to forecast potential future trends regarding 

customers, suppliers and manufacturing assets thereby mobilising their reactive capability to respond to forthcoming 

volatilities (Perano et al., 2023). Qader et al. (2022) asserted that firms that were equipped with I4.0 technologies had a 

stronger performance is responding to the disruptions caused by COVID-19. Furthermore, incorporating such 

technologies into SC operations and management as well as obtaining real-time data can effectively assist executives in 

strategic planning (Eslami et al., 2023). 



     Sony and Naik (2020) identified three types of operational capabilities (OCs) that automation can enhance: i) cyber-

physical, ii) sensing, and iii) cognitive. In a broader term, OC can be defined as the ability of firms to generate value-

adding tasks (Victer, 2020). From an OC perspective, SC integration is seen as internal and external integrative 

capabilities that (in)directly influence organisational performance (Münch et al., 2022). The integrated capabilities from 

across the supply network can expand cyber-physical (e.g., assets/inventory), sensing (e.g., condition monitoring), and 

cognitive capacities and competencies. Hautala-Kankaanpää (2023) asserted that digitalisation can increase a firm’s 

ability to utilise data and seize data-related business opportunities.  

     Considering that SCs are complex socio-technical systems (Tortorella et al., 2024) and their relations to the 

organisational capabilities and performance of a firm are determining, we based our theoretical framework on socio-

technical system and organisational capability theories. The combination of the two theories allows us to take the 

environment of an organisation into account, specifically its SC, and study its interdependencies with organisational 

capabilities besides their key performance indicators (KPIs). With the recent diffusion of I4.0, this approach is gaining 

more attention (Sony and Naik, 2020; Münch et al., 2022). Furthermore, previous studies have reported a direct 

relationship between the organisational capability, mitigating digitalisation challenges and the overall organisational 

performance, which can be quantified in terms of both process efficiencies and DC (Hallikas et al., 2021). 

     To the best of our knowledge, no academic study has yet adopted a socio-technical lens to ascertain the underlying 

pain points in the SC of high variety, high value, and low volume spare parts for manufacturing assets in the automotive 

sector. Moreover, the feasibility of integrating big data analytics, PdM, and supply chain management (SCM) needs to 

be assessed in monetary terms and its impacts on organisational capabilities for manufacturers. This emphasises the 

existence of a clear research gap about identifying the obstacles and financial values of integrating PdM with digital 

inventory management of spare parts in the automotive manufacturing SC (Kovács et al., 2020; Tortorella et al., 2024). 

Table I compares the most relevant and recent research in the realm of SC digitalisation with the present study in terms 

of characteristics, gaps, and contributions of the present study. 

Table I appears here 

 

3. Research Design and Methods 

    Due to the implicit and ever-changing workflows, tacit knowledge of practitioners (e.g., maintenance technicians and 

supervisors), and scarcity of empirical data it was decided to conduct a multi-method data collection including 

participant observation with embedded multiple case studies and a scenario-based simulation to firstly diagnose the pain 

points and secondly quantify the economic benefit of the plausible scenarios for integrating PdM across the SC. To 



achieve this, it was important to incorporate the knowledge and experience of the domain experts into the data 

preparation, simulation, and evaluation phases in the designed approach (Bekar et al., 2019). Since the integration of 

spare part inventory management and PdM in ASC is a novel practice (Kovács et al., 2020; Zangiacomi et al., 2020) 

and the exploratory nature of this research, the multiple case study approach constitutes a suitable approach for such a 

study (Yin, 2009). It was argued earlier that SCs are complex and multi-faceted socio-technical systems. Jayaram et al. 

(2014) recommended case study research for constructing new or extend theory of complex social phenomena and 

that it can provide insights through in-depth details by collecting primary data. This facilitates cross-case comparison 

and includes the perspectives (or perceptions) of several actors across the ASC (Zangiacomi et al., 2020). Accordingly, 

a research protocol was developed to enhance the validity and reliability of the findings (Zangiacomi et al., 2020), 

encompassing the overall design of the case study, the data collection, the data analysis as well as the results 

formalisation (Yin, 2009). A schematic overview of the steps in the embedded multiple case studies is provided in Figure 

1. 

                                                    Figure 1- schematic of the research steps 

 

Data collection framework in this study comprises of two stages: Stage 1) primary data was collected through 

field trips to study the existing processes of spare parts procurement and storage and equipment maintenance 

in OEMs. More primary data was collected in the second step of this stage through expert panel discussion 

with managers in the automotive SC discussing around potential roadblocks of the spare part inventory 

management with the maintenance process in a digital SC.  Stage 2) Secondary data from the existing literature 

was used for running different scenarios through simulation. Further details are provided as below. 



3.1. Stage 1 – Process Mapping and Obstacles Identification 

Four companies identified with various sizes based on the number of employees as key players in the spare part of ASC 

have been approached to identify the major SC and PdM integration requirements and barriers through participant 

observation and expert elicitations (Table II).  

                                                 Table II appears here 

     A careful participant observation and expert discussion as a part of the field trips took place at two OEMs (Company 

A and B). Company visits included the following activities: a) close observation of operations and documentation; b) 

note taking; and c) liaison with the operatives and production, maintenance, inventory and procurement managers. 

Accordingly, we had discussions with 3 operatives and production, logistics and maintenance managers of one 

production line in each company to create the existing processes and capture necessary information about current 

maintenance and spare part ordering procedures. This was to carefully capture all real-world step-by-step processes of 

the maintenance of machinery and spare part management, including the ordering system. Next, two separate process 

maps were developed in Microsoft Visio to identify potential and actual obstacles for PdM integration with digital spare 

part SC and inventory management. Non-value adding activities or paint points in Companies A and B as potential 

detrimental factors for embarking on digital integration of spare part inventory management with PdM and maintenance 

processes were identified through process mapping analysis (Figures 2 and 3).  
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     This was followed by a real-time SC and PdM data collection through expert panel discussions in Companies C and 

D as the key players in providing solutions for PdM (Company D) and spare part inventory management (Company C). 

Three expert panel discussions were held with the chair, chief executive officer (CEO), data manager, procurement and 

logistics managers and software developer in Company C to identify the current bottlenecks in their spart part 

management and the perceived obstacles in their way towards adopting the proposed integration. This practice was 

replicated for Company D where the CEO, chief technology officer, and product associate participated in the expert 

elicitation sessions.  

3.2. Stage 2 – Scenario Building and Discrete-Continuous Event Simulation 

    Motivated by the participant observations, expert panel discussions and process mapping from the first stage, in the 

second stage, we used discrete-continuous event simulation to model the maintenance processes in manufacturing 

factories of varying sizes, both with and without a unified SC and a PdM system. This was performed to quantify the 

economic values of the integration in terms of KPIs such as machine downtime and failure costs. The merit of this 

approach is that we can model and evaluate different scenarios that may not exist yet and we can quantify the economical 

values of them under different parameter settings (e.g., factory size, spare parts failure rate) (Calatayud et al., 2019). We 

used the open-source Python-based SimPy library to implement the simulations because of its flexibility in programming 

and the intricate details of simulations. It can also be integrated with a range of state-of-the-art AI software libraries 

(e.g., TensorFlow by Google, Meta AI).  

     The emphasis in this study was placed on simulating machine downtimes using various strategies, without directly 

estimating the total cost of spare parts in a particular inventory or estimating the cost of implementing those strategies 

(i.e., SC and PdM) in practice. This is because production disruption caused by machine downtimes has been reported 

as a significant factor in factory maintenance and it can be easily quantified, hence the importance of investigating the 

impact of this factor in more details. Also, the present study was concentrated on the technical integration of SC, 

inventory management and PdM, and the data capture process was limited in distilling price or investment-related 

information. Nevertheless, incorporating monetary information into the simulation can be one of the key future research 

areas, which together with machine downtime reduction would better inform corporate decision-making on the 

integration of SC and PdM. 

3.3. Simulation  

     The flexibility of the selected approach enabled us to develop a variety of plausible scenarios (figure 4) that may not 

currently exist and prevented any incurring costs of physically implementing them for experiments. Simulation can offer 



a distinct advantage for decision making by exploiting capabilities, insights, and information of all SC members and 

extend the scope of study to a wider extent (Van Der Zee and Van Der Vorst, 2005).  

     In Scenario 1, a factory can have one or multiple machine clusters for production. When any component fails at a 

given time, the associated machine and cluster would stop running, until the part is completely replaced with a spare 

one. As a result, the maintenance strategy in this scenario is unplanned and reactive, which can lead to longer downtime 

in production line due to shortage in the inventory and increased lead time. Once the maintenance team has identified 

the failed part, an order would be placed to the factory’s suppliers by the procurement team to get a replacement. As 

those suppliers can be diversely distributed in geography, the lead time for an order to be fulfilled can be as short as one 

day or as long as one week. As a result, the downtime of the whole factory can be unpredictably long, causing high 

monetary losses.  

     Scenario 2, in contrast, replaces the factory’s existing suppliers with Company C’s centralised system (Vendor 

Inventory Management) to provide spare parts. The maintenance strategy remains intact as in Scenario 1, but the average 

downtime of the factory can be shortened because the lead time of replacement and order fulfilment is considerably 

shorter with the new on-site vending technology. The order handling time would also be shorter since the maintenance 

team only needs to liaise with one rather than many suppliers. Scenario 3 is another version of Scenario 1, where the SC 

system is unchanged, but the maintenance strategy has been upgraded to be predictive. The integrated system now 

screens each part and checks if it has passed certain days of operation. If that is the case, then at a certain likelihood the 

part can be identified to be failing soon and a maintenance alert is raised, thereby triggering a replacement order for the 

SC and inventory system. This is a continuous stochastic process, and it can model the wearing-out and expiring 

behaviour of machine parts in reliability engineering study to some extent. However, it is noteworthy that this is an 

abstraction of Company D’s PdM algorithm, but it has the key capability of preventing unplanned part failures. Scenario 

4 is the final integrated solution in which both Company C’s SC and inventory system and Company D’s PdM are 

leveraged to further drive down machine downtime. 



                                                        

Figure 4- four simulated scenarios of discrete-continuous spare parts SC and maintenance processes  

 

3.4. Part Failure Simulation  

     The other driver of the simulations is the failure of spare parts in production systems. When simulating the failure 

of a part, two main design considerations were at stake. The first was that failures are to some extent stochastic without 

taking into account the external factors, such as natural disasters. This was satisfied as we focused on simulating the 

‘natural’ decay of parts and in this setting the process can be assumed to be randomly distributed. Our second point of 

consideration when simulating part failures was that they have certain heterogeneity. Some parts are short-living and 

can fail within a shorter period of time compared to more enduring parts. Since it is challenging to accurately characterise 

the average lifetime of each individual part in a factory, we took the approach to randomise how long on average a part 

can work effectively before failing. Given these considerations, we proposed to simulate the heterogenous failure 

distribution of spare parts using the Weibull distributions with varying parameters. The Weibull distribution, with two 

unknown parameters, is a sufficiently useful life distribution model that can simulate the complex non-constant hazard 

ratio of spare parts in the real-world. The probability density function (PDF) of the model is as follows: 

𝑓(𝜂, 𝛽, 𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1𝑒

−(
𝑡
𝜂

)𝛽

 

    where 𝜂 and 𝛽 are the scale and shape parameters to be set respectively, and 𝑡 is time. The reliability of a part in this 

model is expressed as the following: 

𝑅(𝑡) = 𝑒
−(

𝑡
𝜂

)𝛽

 



    When 𝛽 = 1, the model is reduced to the exponential distribution that essentially assumes that the failure hazard rate 

of each spare part is constant throughout its life span, which is very unlikely as most spare parts wear out in 

manufacturing and hence can become more prone to failures through aging. As a result, we chose to set 𝛽 above 1 for 

our simulations. In this case, the scale parameter 𝜂 of the model can be related to the so-called mean-time-to-failure 

(MTTF) of spare parts 𝑇̅ via the following functional form: 

𝑇̅ =  𝜂Γ(
1

𝛽
+ 1) 

in which Γ(∙) is the Gamma function. 

    Figure 5 shows two example cases, one with the parameters 𝛽=1.2 and 𝜂 = 300, and the other with 𝛽=1.6 and 𝜂 =

500. In the first case, it can be seen that the probability of a part failing when it reaches its 80 days is 20%, with the 

reliability is set at 80%. Once 220 days have passed and the part is still functioning, it will fail at a 50-50 chance in the 

next moment. If the part has survived for more than 1000 days, it is almost surely to fail with a near 0 reliability. 

However, if we increase the scale parameter to 500 days as in the second case on the bottom of Figure 5, a part can 

survive longer. In fact, the reliability is around 20% even though 660 days have elapsed. Only after 1400 days will a 

part almost definitely fail if it has not yet. In both cases, the hazard ratio of each spare part is constantly increasing, 

which agrees with empirical observations that parts wear out during manufacturing processes and as a result become 

increasingly less reliable. A higher shape parameter as shown on the bottom of Figure 6 means that the parts will be 

simulated to wear out more quickly compared with a smaller shape parameter. This is convenient particularly for 

simulating heterogenous scenarios.  

 



Figure 5- Weibull distribution for simulating the failure of spare parts against time. Top row: β=1.2, 

η=300. Bottom row: β=1.6, η=500 

 

Figure 6- (left) a single cluster of machines; (right) the failure of any part causes the machine that 

contains this part to fail, which in turn shutdowns the whole cluster of machines that co-depend on each 

other’s functioning 

 

3.5. Machine Layout  

       As shown in Figure 7, after abstracting away irrelevant details, we model a factory as the hierarchical composition 

of three key entities: machine clusters, machines, and spare parts. The top layer of hierarchy corresponds to machine 

clusters where under each is a collection of machines that depend on and cooperate with each other to accomplish the 

belonging cluster’s production job. Further down the hierarchy, each machine consists of multiple spare parts. These 

parts vary in nature and functionality, and they work closely with each other to let the machine function properly. The 

flexibility of such hierarchical modelling allows us to simulate distinct types of factories. 

  In actual implementations, when simulating a whole factory, the key control logics are: 

1) machine clusters operate independently unless all clusters are down. 

2) all machines within the cluster must have finished their tasks and returned successful status before simulation can 

step further.  

3)each spare part will be assigned with a time to normal functioning of machine and part sourcing, replenishment and 

fitting in the event of failure and with limited time of maintenance team. Scenarios 3 and 4 are applied here (figures 5 

and 6).  

 

4. Findings 

4.1. Results from the participant observations and expert panel discussions 



    It was observed that Company B had more flexibility comparing to Company A in their production planning and 

control including the use of different machines in the event of machine failure and sourcing their spare parts from 

different vendors. It was also observed that the approaches towards high variety, low volume and high value spare parts 

inventory management are relatively different comparing to consumable parts which are more homogeneous and high 

volume. 

    The process mapping analysis in Companies A and B (Figure 2) highlighted the major obstacles to be investigated 

before integration happens (table III). The expert panel discussion with Company C exposed that they are the major 

spare part provider for Company A (5000 units) managing the inventory through vendor inventory management 

(vending machines on the shop floor) and statistical analysis of the real time data saving Company A with over £1m 

between 2012 and 2021. The major obstacles for Companies C and D to be considered before the integration are 

provided in Table III.                             

                                              

                                                   Table III appears here 

 

     The identified factors were categorised to be used for the second stage of the analysis, which is presented in figure 

7. We classified the identified influential factors as the result of data collection and analysis in the first stage. These 

factors were grouped into four categories, namely: i) technology/machinery, ii) strategy/system, iii) finance; and iv) 

organisational culture. The above clusters are aligned with the categorisation put forward by socio-technical approach 

and can be involved in designing business models for this integration and experimental simulation of this study as the 

following stage since both SC and manufacturing robots/equipment encompass technology (machines), human input, 

and a level of interaction between them. Therefore, that classification can be exploited in system design and locate the 

interdependencies between the four categories. The identified parameters from practice provided in table III and figure 

5 were used for the second stage that was experimental simulation.  



 

                                                       

Figure 7 – 

Categorised factors 

involved in digital 

integration of spare 

part inventory 

management and PdM 

 

4.2. Results from the 

experimental 

simulation 

    The period of 

simulation was set at 5 

years. Table IV provides information on the factories’ configuration and size while Table V demonstrates the 

downtimes. Overall, the results in table V show that Scenario 2 consistently outperforms Scenario 1, regardless of 

factory size with average 21% reduction in downtime. Quantitatively better than Scenario 2, Scenario 3 improves over 

Scenario 1 by average 33% which represents a great reduction of unplanned downtimes due to adopting PdM. It is 

evident from the results that the combination of SC and PdM, i.e. Scenario 4, creates a compound effect on the 

performance of factories of varying sizes with average machine downtime reduction by 50%. It means that the proposed 

integration could on average save a great amount of the unplanned downtime across factories. In terms of economic 

gains, for factories with 1600 machines, the results show that the annual downtime cost in Scenario 1 would be around 

£68.64m. After integrating our proposed system, the cost is expected to be driven down to £53.28m, representing a 

saving of £15.36m. 

 

                                                              Table IV appears here 

 

                                                                Table V appears here 

  

     Firstly, as shown in Table V, factory size has a profound effect on the simulated production downtime. This shows 

that the average downtime is decreasing with an increasing factory size, which is consistent with what we can observe 

in the real world as larger factories tend to be more resilient in inventory and production management and as a result 



suffer less from machine failures in terms of downtime.  

     Secondly, as Figure 8 depicts, Scenario 2 consistently outperforms Scenario 1, regardless of factory size. Thirdly, it 

is evident from the results that the combination of inventory management and PdM, namely Scenario 4, creates a 

compound effect on the performance of factories of varying sizes. Comparing to the average reduction of 19.19% and 

30.46% from the traditional system to Scenario 2 and 3 respectively, 44.31% is even greater and it means that the 

proposed integrated system can on average eliminate up to half of the unplanned downtimes across factories. The 

relationship between machine downtime reduction and factory size (i.e., number of assets) tends to be nonlinear. This 

can be explained as when a factory becomes larger, the amortised downtime over each machine is lower in comparison 

with a much smaller factory, which makes it harder to reduce the average downtime further even by deploying advanced 

technologies. In other words, a positive yet non-linear relationship between the scale of service activities and 

profitability can exist in a way that early levels of servitisation lead to a steep rise in profitability. A period of relative 

decline may be observed before the positive relationship between the scale of services and profitability returns (Kastalli 

and Van Looy, 2013). However, this does not take into the fact that with a larger factory the impact of breakdown events 

generally might have a more severe consequence for the production. As stated in Section 3.2, our simulation is focused 

on machine downtime without considering production details or price-related information due to the lack of historical 

data. Nevertheless, our results can substantiate the benefit of implementing such digitally integrated PdM and SCM.  

 

 

Figure 8- average machine downtime with respect to factory size (i.e., number of machines) 



 

 

Figure 9- 

average 

machine 

downtime 

with respect to 

different 

scenarios 

 

5. Discussions 

5.1. Practical implications 

    The findings in the previous section revealed the practical implications such as obstacles and economic benefits for 

the digital integration of spare parts inventory management with PdM. Scenario 4 appeared as a feasible and most 

effective solution to address one of the key manufacturing objectives in relation to PdM, inventory management and 

SC, which is avoiding the unplanned machine downtimes due to shortage of spare parts (Bousdekis et al., 2019). The 

present study also reflects the suitability and necessity of a multi method approach for investigating the readiness of 

organisations across the ASC to embrace the proposed digital transformation. It also supports the principles behind the 

OC (Shee and Miah, 2021; Münch et al., 2022) where digital integration of spare parts inventory management with PdM 

is associated with both external and internal ASC factors.  

     The significance of SC digitalisation for inventory management has been already raised by several research scholars 

(e.g., Holmström et al., 2019; Kovács et al., 2020; Queiroz et al., 2021; Farajpour et al., 2022; Eslami et al., 2023) and 

has been manifested by our study. However, the scope of the present study was narrowed down to the UK car 

manufacturing sector which has recently faced profound challenges due to SC disruptions (Ambrogio et al., 2022). 

Dynamic, uncertain and volatile environment of ASC in recent years, especially the shortage of semiconductors, 

represents ED (Dubey et al., 2020; Shan et al., 2021) that is an indication of the influence of organisational and external 

factors on a digital and integrated PdM and inventory management. The internal and external influences on this 

integration provided a ground for this study to identify the obstacles in the way of digitalising ASC (Victer, 2020; Shee 

and Miah, 2021; and Münch et al., 2022) that requires to be a collaborative SC. The essence of SC collaboration through 



digitalisation of any SC and inventory management was highlighted by our findings where the best-case scenario (i.e., 

Scenario 4) promotes a more viable integration and collaboration among the participatory parties across an ASC 

(Bortolotti et al., 2015). Digitalisation and data transition across ASC can foster cyber-physical capabilities (Victer, 

2020) including data and information analytics through enhancing asset categorisation, sensing capabilities, data 

acquisition, and condition monitoring. 

     Furthermore, the proposed solution proves to be effective for upgrading SC performance management criteria, 

particularly for SC resilience and risk propagation as important operations objectives (Balakrishnan and Ramanathan, 

2021; Qader et al., 2022). The main risk factor that was studied in this research is indeed the inefficient spare parts and 

ineffective inventory management for manufacturing assets. That shortage can lead to machine downtimes and disrupted 

production. In broader terms, the economic gains (i.e., manufacturing and SC cost reduction) will drive organisations 

of various sizes across the ASC to embrace interconnectivity facilitated by digitalisation of their machinery spare part 

SC and inventory management systems. Unexpected breakdowns and shortage of spare parts are not unique to the 

automotive industries and would produce the same consequences (i.e., increased downtimes and production costs) in 

various sectors (Aransyah et al., 2020). This means, our study has unique significant economic value for the 

manufacturers by turning their attention more towards hidden SC costs associated to the spare parts as a decisive 

indicator for the overall SC cost with comprising of 20-50% of the overall procurement cost (Wallin Blair et al. (2020). 

Accordingly, the findings of this research can provide insights for other industrial firms than just automakers. Great deal 

of Environmental, Social and Governance (ESG) enhancements is another managerial implication and appears to have 

a potential to contribute towards OC and needs further exploration and analysis. 

     Apart from the obstacles that surfaced during the observations and can impede the proliferation of a digitalised SC, 

there are other deterrents discussed in the literature and can complement our preliminary results. Cyber and data security 

is among the primary concerns for organisations when considering digitalisation of their processes and interconnecting 

their assets (Holmström et al., 2019; Farajpour et al., 2022). Initial investment for embedding infrastructural capabilities 

(Queiroz et al., 2021; Farajpour et al., 2022; Tortorella et al., 2024) and training staff (Aransyah et al., 2020; Zangiacomi 

et al., 2020; Deepu and Ravi, 2023) may also discourage industrial firms to adopt SC digitalisation. Uncertainties around 

ROI is another inhibiting factor (Gupta et al., 2022). While digitalised operations will generate a broader array of 

maintenance- and logistics-related data sets, data ownership in interfirm production systems (e.g., servitisation of 

processing assets) and concerns over commercial/confidential data usage (or leaks) need to be meticulously addressed 

(Olsen and Tomlin, 2020). 



     A strong positive correlation was found between factory size (or in other words number of manufacturing machines) 

and profitability of the proposed solution. This can be explained in terms of economies of scale (i.e., fixed costs 

distributed over more units). Economies of scale can also be achieved when an independent service provider (Company 

D) is serving multiple customers, while a single manufacturer needs to invest in service resources and capabilities for a 

relatively smaller number of machines (Kastalli and Van Looy, 2013). Economies of scope, in contrast, may not 

necessarily realise as heterogeneity of machines and their spare parts can increase costs. 

5.2. Theoretical contributions 

     A key challenge to the SC recovery endeavours is limited availability of data and information sharing which would 

further degrade a firm’s resilience in recovering from SC disruptions (Jain et al., 2022). Although the importance and 

utility of a digital integration between PdM and spare part inventory management has been stressed in the academic 

literature, lack of empirical evidence would hinder the development and adoption of that innovation (e.g., Calatayud et 

al., 2019; Carvalho et al., 2019; Kovács et al., 2020; and Dubey et al., 2020). To shorten this gap and provide 

contemporary evidence, this research centred on lack of accurate forecasting for machine failures, a centralised on-

demand inventory management system and financial gains of timely planning for spare part replenishment (Zhu et al., 

2022; and Balakrishnan and Ramanathan, 2021). This research is a preliminary attempt to identify the most impactful 

organisational and process-related factors in spare parts inventory and demand management. 

     Our multi-faceted findings are also in favour of diffusion of socio-technical system theory into inventory 

management in car manufacturing industries (Dubey et al., 2020; Hobscheidt et al., 2020; Balakrishnan and 

Ramanathan, 2021) by recognising the significant role of organisational culture alongside the technical aspects such as 

IT infrastructure, part criticality, and technological compatibility. In that manner, the emergent themes reflected a 

classification for greater and broader aspects of obstacles, and this can bridge previous studies about technical aspects 

such as data management (Aivaliotis et al., 2021) and those conducted around organisational change management during 

an SC transformation (Zimmermann et al., 2020). 

     The inter-organisational interfaces cantered around digitalised SC opens up new avenues for theory elaboration 

(Holmström et al., 2019). Digitalisation, where cyber-physical and production-control systems are intertwined, enables 

real-time data access, empowering organisations to screen fluctuations in demand and resource availability, and to 

pinpoint bottlenecks and process variability in an unprecedented way. This provides opportunities to revisit firm 

boundaries and DC within the SC and can be further examined through the lens of OC theory. DC build, integrate and 

reconfigure OCs in rapidly changing environments (Eslami et al., 2021).  

5.3. Limitations 



     A noteworthy limitation of this research is lack of historical data to validate our simulation and quantify the actual 

impact of the concerned SC transformation and other organisational KPIs which could be followed by an in-depth 

analysis of a wider range of benefits than just cost savings. Further analyses to statistically test the perceived impacts of 

the specified obstacles on the SC and machine performance in addition to (mutual) interactions of these obstacles as a 

part of a transition to this digital integration could provide complementary insights. Another limitation relates to the 

scope of this research. Although we adopted a socio-technical lens to appraise the proposed solution, most of the barriers 

that were identified fall under the organisational and technical categories. Since this research was at the feasibility phase 

and focused on a few case studies, we were unable to gather real-world data and simulate an operating PdM system. 

Instead, we estimated the failure rates in a stochastic manner and focused on the impact of such process on machine 

downtime intervals. 

 

6. Conclusions and future research 

    Lack of machinery spare parts and long lead times pose a threat to the maintenance and productivity of manufacturing 

assets in the automotive sector. Shifting to data connectivity and homogenisation through a digital PdM integration with 

spare part inventory management was suggested and demonstrated the potential to enhance the efficiency of spare parts 

SC mainly through improved forecasting accuracy, reduced machine downtimes, and augmented OCs (i.e., maintenance 

practices). This would lead to increased SC and organisational resilience and ultimately yield more ROI. On the other 

hand, the simulation results advocate that MTTF and factory size are critical heterogeneity indicators that can impact 

this integration. Addressing these obstacles or challenges would facilitate integrating PdM with disruptive technologies 

such as AI/ML thereby upgrading it into prescriptive maintenance linked to a digital spare part inventory management 

to optimise the ordering system. The RQ1 was addressed through identification of internal and external practical 

obstacles and challenges towards the proposed digital transformation (please see figure 7). The economic benefits of 

this transformation such as substantial cost reduction in machinery and maintenance were most reflected in scenario 4 

where integration of a centralised SC system and PdM can yield the highest benefits.    

Implementation of such a digital innovation requires significant attention to data analytics, information management 

system, ordering process improvement, infrastructure enhancement and cultural transformation. Our study offers fresh 

insights for the current maintenance systems, ordering spare parts and inventory management across ASC with broader 

applications, such as integration of I4.0 technologies with spare part inventory management. The enhanced ordering 

system in this context refers to a less cumbersome and complex ordering system with less SC cost.  



     Considering the possible heterogeneity of the ASC and the volatilities in the external market, a further exploratory 

study of the market together with probabilistic analysis of inherent uncertainties, can complement the present study and 

provide additional evidence base for decision makers. Implementation research including action research or case study 

following the identified obstacles and financial incentivisation (e.g. significant cost reduction and machine downtime) 

can be designed to evaluate the circular economy and environmental benefits (e.g. CO2 emission reduction and resource 

efficiency) for the proposed solution. The main KPI in this research was machine downtime, which lays at operational 

level, but future research can be expanded to comprise variables at tactical and strategic levels.  
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