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Chronic stress is a major source of welfare problems in many captive

populations, including fishes. While we have long known that chronic stress

e�ects arise from maladaptive expression of acute stress response pathways,

predicting where and when problems will arise is di�cult. Here we highlight

how insights from animal personality research could be useful in this regard.

Since behavior is the first line of organismal defense when challenged by a

stressor, assays of shy-bold type personality variation can provide information

about individual stress response that is expected to predict susceptibility

to chronic stress. Moreover, recent demonstrations that among-individual

di�erences in stress-related physiology and behaviors are underpinned by

genetic factors means that selection on behavioral biomarkers could o�er

a route to genetic improvement of welfare outcomes in captive fish stocks.

Here we review the evidence in support of this proposition, identify remaining

empirical gaps in our understanding, and set out appropriate criteria to guide

development of biomarkers. The article is largely prospective: fundamental

research into fish personality shows how behavioral biomarkers could be

used to achieve welfare gains in captive fish populations. However, translating

potential to actual gains will require an interdisciplinary approach that

integrates the expertise and viewpoints of researchers working across animal

behavior, genetics, and welfare science.

KEYWORDS
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Introduction

Stress responses are the behavioral and physiological pathways by which animals
maintain homeostasis and health when challenged by their environment. From an
evolutionary perspective they are considered broadly adaptive (i.e., beneficial for fitness):
exposure to acute stressors is part of normal life for wild animals and “stress” should
not be equated with “distress”. However, it is also true that chronic stress exposure
is a major source of welfare problems in captive animal populations, including fishes
(1, 2). For example, chronic stress can cause behavioral changes [e.g., reduced appetite,
abnormal swimming patterns (3, 4)], physiological changes [decreased growth, reduced
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reproductivity, reduced nutritional status (5, 6)], and
compromised health [e.g., higher injury rate, compromised
immune response (7, 8)].

Given its potential to adversely impact health, stress has
long been a focus of research in the biomedical, veterinary
and animal sciences (9, 10). Here we define chronic stress
following (11) such that an organism can be described as
being chronically stressed when there is long-term activation
of the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis
caused by unpredictable or uncontrollable stimuli in its
environment. Mechanistically, we know that chronic stress
effects arise in large part from maladaptive expression of
acute stress response pathways. For instance, in humans
and other mammals, chronic activation of the hypothalamic-
pituitary-adrenal (HPA) axis leads to prolonged elevation
of glucocorticoids, which can negatively impact growth,
reproduction, and immune function (12). In fishes, prolonged
activation of the analogous HPI (hypothalamic-pituitary-
intrarenal) axis has similar consequences. However, despite
this mechanistic understanding, we remain generally poor at
predicting when particular individuals, stocks or species will
be negatively impacted. Ideally, there should be a method for
high-throughput phenotyping of individuals in order tomonitor
changes, or—preferably—pre-emptively determine those likely
to suffer negative impacts.

Unfortunately, measurement of glucocorticoids [often used
as a proxy for stress in vertebrates, although see (13) for
a more nuanced overview] comes with a host of practical
challenges that make high-throughput phenotyping difficult,
even if non-invasive methods are used [see, e.g., (14)].
An alternative, suggested by links between glucocorticoid
physiology and behavioral “types” or “styles” [e.g., (15–17)]
might be to adopt behavioral testing. Recent technological
advances such as video tracking (18) now offer the potential
for accurate, semi-automated, and high-throughput behavioral
phenotyping. Equally, over the last two decades the emergence
and development of “animal personality” as a major research
topic in behavioral ecology means we have gained many insights
into the causes, consequences and implications of among-
individual differences in behavior.

In this article, we aim to highlight how insights from animal
personality research could be harnessed to improve welfare
of captive animal populations at risk from chronic stress. We
focus specifically on potential applications in teleost fishes.
This is a reflection of both opportunity and need. On one
hand, fishes have been central to animal personality research
so there is now a rich literature to draw on. On the other,
despite rapid diversification of species used for food aquaculture
(19) and their burgeoning use in scientific research (20–22),
fish welfare is often viewed as a lower priority than that of—
for example—mammals by both the public and the research
community [e.g., (23–26); but see (4, 27–30)]. Furthermore, for
many fish species now housed in captivity, domestication is

recent and ongoing. Recognizing that domestication requires
evolutionary adaptation to captive environments over many
generations (31–34) provides a potentially useful perspective on
the challenge here: if fish are routinely housed in conditions
bearing little resemblance to those under which their stress
responses evolved (35) it should not surprise us that those
responses are ineffective and/or maladaptive in novel captive
environments (36). For instance, routine stocking densities
used for zebrafish in scientific establishments far exceed those
found in wild fish, and can generate social processes that can
cause chronic elevation of glucocorticoids (37). Moreover, in
most cases behavioral responses—which are the first line of
organismal defense when challenged by an acute stressor—
are at least partially curtailed in captivity (e.g., a subordinate
individual cannot physically relocate to avoid harassment by a
dominant one).

Simplistically, two main strategies for improving welfare
outcomes in captive fish are used. The first is to try and improve
the fit of the captive environment to the fish in the short
term. This is done through, for example, enrichment of captive
housing condition [e.g., (38–41)]. The second strategy is to try
and improve the fit of the fish to the captive environment over
the longer term (i.e., generations) through selective breeding
strategies. As noted above, domestication involves adaptation
to captivity under natural selection (albeit in an “unnatural”
environment): some individuals within a stock carry genes
better suited to survival and reproduction in the novel, captive
environment, and these genes will tend to increase in frequency.
Artificial selection can also be applied to target welfare-related
outcomes as well as more traditional production traits. In
salmonid aquaculture, genetic improvement of production traits
via well-designed, managed breeding programs is standard, and
offers a route to cumulative and permanent gains (32, 42).
While selective breeding primarily aims to improve economic
efficiency and end point value of finfish species, in many cases
these goals are broadly aligned with welfare improvement. This
is because many traits targeted for improvement [e.g., growth
rate and disease resistance; (32, 43, 44)] are also phenotypes
negatively impacted by chronic stress. Simplistically, those
individuals (and/or genotypes) with low susceptibility to chronic
stress in a given environment should—all else being equal—
be the same individuals (and/or genotypes) that have lower
disease risk, better growth and higher reproductive success in
that same environment.

The goal of the current paper is to highlight how the
burgeoning field of “animal personality” might inform selective
breeding strategies aimed at improving welfare outcomes. We
argue that personality can be viewed as part of the stress
response, and that genetically determined behavioral profiles
are likely to predict welfare-relevant outcomes in captivity. If
so, then integration of behavioral biomarkers into selective
breeding programs offers a widely applicable route to genetic
improvement of chronic stress resistance. Our argument is
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largely prospective: personality has become a major sub-field of
behavioral ecology over the last decade and studies of fishes have
been at the forefront of this [e.g., (45–47)]. We now think the
potential for translation to applied contexts is clear, with the
highest potential for short-term welfare gains likely to arise in
the contexts of housing fish species for scientific research and
developing novel species for food aquaculture. However, even
in salmonid aquaculture—where genetically informed selection
strategies are standard—the utility of behavioral biomarkers
remains relatively unexplored [but see (48, 49) for important
exceptions]. Moreover, growing recognition of stress-related
problems in the pet trade (50, 51) has prompted the suggestion
that improved understanding of natural behavior and ecology
could greatly benefit welfare in ornamental species (52). That
the same suggestion has been made with respect to zebrafish
housed in scientific establishments (53) highlights the point
that behavioral ecological perspectives should be valuable across
aquaculture sectors.

Personality: What is it and why does
it matter?

Before proceeding we briefly outline the concept of animal

personality for any readers unfamiliar with this area of
behavioral ecological research. We also provide a glossary of
terms denoted by italic font throughout this article (Box 1).
That individual animals differ from each other in behavioral
characteristics is intuitive—and perhaps obvious—to anybody
that has kept or worked with livestock, laboratory or companion
animal species. However, it may be less obvious that this is
equally true for wild animals, and seemingly across all taxa
examined to date. The field of animal personality is the study
of these differences, with researchers adopting standardized
behavioral tests and quantitative measures so that hypotheses
about the causes and consequences of behavioral differences can
be formally tested.

Despite attempts to standardize terminology [e.g., (61)],
the rapid emergence of this field over the last two decades
has resulted in plurality of definitions, abundant semantic
arguments, and many jingle-jangle fallacies (57). For present
purposes, we hope to avoid these issues by focusing on
two points of consensus. First, just as in human psychology,
animal personality traits are conceptualized as latent axes of

variation that underpin observed behaviors. So if a population
is hypothesized to contain individuals differing in traits such
as boldness, aggressiveness or sociability then these aspects of
personality are typically investigated viameasurable proxies. For
instance, if a population of fish is characterized by variation
in aggressiveness, we would expect some individuals to rapidly
attack a mirror stimulus more than others, and/or to spend
more time displaying to a rival, and/or to chase tank mates
more frequently (62). Second, personality studies generally

BOX 1 Glossary

Brief definition, and a reference to further reading where appropriate.

Animal personality: Consistent or repeatable differences in behavior
among individuals across time and/or contexts. This among-individual
variation is attributable to the combined influences of genetic and
environmental effects that permanently affect the phenotype of an
individual. Typically quantified as repeatability, and often used as an
informal indicator of the upper limit of the heritability of behavior.
Commonly studied personality traits include aggressiveness, activity,
boldness, exploration, and sociability [see (54)].
Breeding value: The deviation (or effect) of each genotype from the
population mean.
Correlational selection: selection for optimal trait combinations [see (55)].
Genetic correlation: The correlation of trait breeding values. Can be
used to describe the association between different traits on the same
individual or between the same traits on different individuals in different
environments (where an “imperfect” correlation indicates genotype-by-
environment interaction). Genetic correlations are largely caused by
pleiotropy (when one gene influences multiple traits) but can also be
caused by linkage disequilibrium (non-random association of alleles at
different loci within a population).
Heritability: The proportion of phenotypic variance that is due to additive
genetic effects [see (56)].
Integration: Correlation structure among suites of traits. Can be studied
at levels including phenotypic, among-individual, and genetic.
Jingle-jangle fallacies: Pervasive and misleading over- or under-labeling
of traits. A “jingle” fallacy occurs when a single trait label inadvertently
describes two functionally different traits measured with different tests.
A “jangle” fallacy occurs when two different labels measure the same trait
[see (57)].
Latent variable/axis of variation: A variable that is not directly observed
but rather inferred from a model of observed data.
Phenotypic plasticity: Expression of different phenotypes by a single
genotype, often in response to environmental variability [see (58)].
Repeatability: The proportion of phenotypic variance due to differences
among individuals [see (59)].
Stress coping styles: Characterizes the behavioral and physiological
responses of individuals to a stressful situation. Distinct styles, or the
extremes of a continuous axis, are often labeled as “proactive” (exhibiting
strong responses to stimuli) and “reactive” (more passive responses) [see
(15)].

target an understanding of differences in behavior among-
individuals that are consistent (or repeatable) across time and/or
context. This is distinct from within-individual variation that
arises from phenotypic plasticity of behavior in response to
extrinsic environment, social context, physiological state, or
motivation. If within-individual variation is high, then any
single observation will contain little information about that
animal’s underlying personality, and so whether or not it
differs from any other individual. Conversely, if the behavior
of individually identifiable animals is observed repeatedly, then
the among- and within-individual components of variation can
be statistically partitioned (Figure 1). Thus, repeated measures
designs are the usual hallmark of animal personality studies (54,
63, 64).

The importance of distinguishing among- from within-
individual variation in personality research stems from the

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.1046205
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Prentice et al. 10.3389/fvets.2022.1046205

FIGURE 1

(A) Illustration of how repeated observations (points) on di�erent individuals (colors) can be used to partition among- from within-individual

variation in a population. The horizontal dashed line shows the population mean, and horizontal solid lines the mean for each individual. Solid

vertical lines show the extent to which individuals di�er (on average) from the population mean. Dashed vertical lines show how an individual’s

observations vary from their own average value (i.e., the within-individual or residual variance). (B) Observations (points) and individual-specific

means (horizontal lines) for duration of time in the middle (inner) zone for 24 zebrafish (Danio rerio) observed over six open field trials. Five

representative individuals have been colored to highlight their means and observed values. The adjusted repeatability of this behavior within the

study was estimated at 0.56 from a mixed model analysis. Data redrawn from (60) with permission. Danio rerio silhouette by Josefine Bohr Brask

and used under Creative Commons Licence BY-NC-SA 3.0 (https://creativecommons.org/licenses/by-nc-sa/3.0/).

evolutionary principles and adaptive framework that underpins
behavioral ecology. Differences among-individuals are a pre-
requisite for natural selection, which occurs when differences
in phenotype cause differences in fitness (65), and also for a
response to selection. More formally, in quantitative genetic
theory the repeatability (R, the proportion of variance explained
by individual identity) sets an upper limit for its heritability

(h2, the proportion of trait variance explained by additive
genetic effects). In turn, the heritability determines the fidelity
with which selected phenotypes are transmitted from parents
and offspring and so the rate of evolution for a trait under
selection (56).

Personality as a component of the
stress response

Studies targeting physiology dominate the empirical
literature on stress response. Indeed an overly narrow, albeit
pragmatic, focus on glucocorticoid physiology means that
“stress” and cortisol are sometimes treated as synonymous [but
see (13)]. However, conceptual models such as stress coping

style (SCS) (15) explicitly recognize the importance of behavior.
SCS proposes functional integration of neuroendocrine and
physiological pathways with individual behavioral profiles.
Under SCS a “reactive” stress response is characterized
by behavioral immobility (e.g., freezing) coupled to lower

glucocorticoid response, while “proactive” types are predicted
to show more active “fight-or-flight” behaviors and higher
glucocorticoid levels (15). The behavioral aspect of SCS is
equivalent to the personality concept used in behavioral
ecology, and at least analogous to shy-bold type personality
variation (66). While boldness is usually defined as an axis
of variation in behavioral responses to perceived risk (54),
the specific testing paradigms and behavioral measures used
in fish models have equal validity for assaying acute stress
response. These include, for example, assaying time to resume
feeding or leave a shelter after a simulated predation event
(e.g., net chase), quantification of neophobic responses to
novel objects, and measurement of thigmotaxis (wall-hugging).
Freezing and/or “flight-type” swimming behavior after being
placed in an open field arena have also been used [e.g.,
(67, 68)] highlighting that variation can equally be characterized
by extracting movement parameters (time stationary, step
length, turning angle, and burst frequency) from tracking
data (69). Verbal models are, of course, open to subjective
interpretation; whether studies of boldness in fish reveal
among-individual variation more consistent with differences
in the “style” as opposed to the “magnitude” of a behavioral
stress response is a fine distinction that may be difficult to
resolve in practice [see (67) for an attempt to do so in guppies].
For current purposes, however, what to call personality
variation revealed by exposure to acute stress stimuli is of lesser
importance than determining whether it is correlated with
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stress physiology, and/or predictive of welfare outcomes under
chronic stress exposure.

There is now abundant evidence that fish populations
harbor high levels of shy-bold type personality variation. This
conclusion is taxonomically general, although a number of small
teleost model species have contributed disproportionately to
the literature, notably guppies and sticklebacks in behavioral
ecology, e.g., guppies (70), sticklebacks; (71, 72), rainbow trout
in aquaculture [e.g., (73)], and zebrafish in biomedical research
(74, 75). Moreover, quantitative genetic analyses across a range
of fish species have shown that among-individual differences
are at least partially explained by heritable genetic effects (76–
78). Increasingly the goal for behavioral ecologists studying
fish personality is to go beyond simply characterizing patterns
of repeatable and/or heritable variation, by further exploring
the ecological and functional relevance. For instance, how
stable is personality across different stress contexts (47) or
temperatures (79)? Are particular personalities associated with
parasite susceptibility (80) or pollutant exposure (81)? Do bolder
individuals dispersemore (82)? Are some personality typesmore
attractive to potential mates (83) or favored by selection because
they yield greater reproductive success (84)? A general criticism
of the personality approach from within behavioral ecology is
that reliance of simple standardized behavioral assays, often
conducted under laboratory conditions, might tell us less about
the structure and function of among-individual differences in
wild populations than we hope. This criticism has validity, but
also a useful corollary: if studies of shy-bold variation in captive
fish populations may sometimes lack ecological relevance, they
typically involve manipulations and presentation of stressor
stimuli that are very relevant to life in captivity.

Integration of personality and stress
physiology in fishes

We now know that personality differences are ubiquitous
in fishes. At the same time, longitudinal, repeated measures
approaches have become more commonly used in fish
physiological studies, revealing that among-individual
differences in stress-physiology are common [e.g., (47, 85, 86)].
However, to what extent are personality and physiological
traits integrated as widely predicted (9, 10, 36, 87)? At this
juncture it is worth noting that the concept of “integration”
can be understood from both proximate (mechanistic) and
ultimate (evolutionary) perspectives. In the former sense,
phenotypic correlations between neuro-physiological and
behavioral traits associated with acute stress response are
clearly expected. For example, activation of the sympathetic
nervous system is causal to fight-or-flight responses, while
glucocorticoids released by the HPA(I) axis are known to impact
behavior extensively (88, 89). However, from an evolutionary
perspective, we are primarily interested in the extent to which

genetic effects underpin correlations among traits as this
determines their potential to evolve independently. Natural
selection does not act on single traits in isolation but rather on
multivariate phenotypes (90–92). Moreover, if there is no single
optimal combination of trait values, then correlational selection

can favor multiple combinations that yield relatively high
fitness, maintaining variation and—over time—leading to the
emergence of among-trait correlations (93). Strictly speaking,
this argument predicts the emergence of genetic correlations

among traits but—for reasons outlined above with respect to
single traits—these should be reflected in among-individual
correlations (as opposed to within-individual correlations
driven by plasticity).

In fishes, studies of stress-related physiology-behavior
correlations remain limited, and more direct tests of the genetic
and among-individual correlations predicted by evolutionary
arguments for integration are needed. Support for integration
comes primarily from studies of commercially important
aquaculture species (94) including Senegalese sole [Solea
senegalensis; (95)], olive flounder [Paralichthys olivaceus; (96)]
and mulloway [Argyosomus japonicus; (97)], and there is
additional evidence from ecological models such as sticklebacks
(98, 99) and Poeciliids [e.g., (66)]. Broadly, the emergent pattern
is consistent with integration of behavior and physiological
stress response traits in fishes, though not all relationships match
specific predictions from verbal models such as SCS [see e.g.,
(66)]. In other words, populations do harbor among-individual
variation in multivariate stress response and there is correlation
structure among behavioral and endocrine traits. However,
across populations and species it is much less clear whether, for
example, high cortisol responses to acute stressors are always
associated with behavioral trait characteristics described as “shy”
(in the personality literature) or “reactive” (under the SCS
model). In addition, more evidence is required to determine
whether high cortisol responses to acute stressors do predict
chronic activation of the HPA/I axis—and whether there are
other biomarkers that may provide a more robust signature of
chronic stress in fish [e.g., (100)].

A series of studies on rainbow trout (Onchorynchus mykiss)
have proven particularly influential because they harness the
power of artificial selection to demonstrate integration at the
quantitative genetic level. Replicate lines of trout selected
for high and low plasma cortisol response to a confinement
stress test (101) showed correlated changes in stress-related
behavior (16, 102–105). Although this clearly evidences genetic
correlation structure between physiology and behavior, some
later results from this series of studies appear inconsistent and/or
context-dependent complicating the interpretation somewhat
(106–110). More recently, using a quantitative genetic breeding
design coupled to repeated measures of behavior and physiology
in wild-type guppies (Poecilia reticulata) (67), showed evidence
of genetic correlation structure between stress-related behavioral
traits (e.g., thigmotaxis and freezing) expressed in open field
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trials (OFT) and free circulating cortisol levels produced in
response to an isolation and confinement stressor (Figure 2).
This finding means that artificial selection on personality
assayed by OFT would be expected to result in correlated
evolution of cortisol physiology.

Can we use personality to predict
welfare outcomes?

Accepting that personality forms part of an integrated
acute stress response (47, 67), and that differences in acute
stress response are linked to differences in chronic stress
susceptibility (27, 29), it follows that at least some aspects of
personality should be useful in predicting welfare outcomes
in captivity. Unfortunately, very few studies have tested this
proposition directly, which is perhaps a reflection of poor
communication between fundamental biologists studying fish
behavioral ecology, and more applied researchers working with
aquaculture populations. In fact the importance of behavioral
variation is widely recognized in aquaculture as behavioral signs
nearly always provide the primary warning of emerging health
and welfare problems. The recent development of automated
tools to detect deviations from normal behavior (111) should
therefore prove a valuable addition to the armory of facility staff
and managers charged. However, at present fish behavior is only
used to identify problems that have arisen, not to predict—and
so avoid—future problems.

Conversely, for more than a decade behavioral ecologists
have been very interested in the extent to which individual
personality predicts evolutionary “fitness” outcomes (112).
Although these include variables such as mortality risk,
reproductive output and disease susceptibility that are also
relevant as welfare indicators in veterinary and animal
science, the ultimate goal is usually to understand the fitness
consequences of personality variation in wild populations. The
emergent picture from this field is complex; personality traits
are often correlated with fitness measures (82, 113), but counter
examples are easy to find in the literature [e.g., see (112)],
and relationships can be state and/or context dependent [e.g.,
(114, 115)]. In a recent multi-taxa meta-analysis of shy-bold
personality variation, which we have argued is closely related
to the acute stress response, Moiron et al. found that bolder
personalities tend to have higher survival (116). Interestingly,
however, this pattern was driven by studies of wild animal
populations and no relationship was detected in the subset of
studies on captive laboratory populations. Clearly there is need
for caution when generalizing across contexts: wild populations
experience some agents of mortality that are neither applicable
to captive scenarios nor linked to chronic stress. For instance,
in guppies (Poecilia reticulata) bolder individuals have greater
survival in the presence of predators (117). However, this is not
because bold fish are better able to tolerate the chronic stress of

living under high predation threat, but because they are better
able to avoid the rather more acute threat of actually being eaten.

Although data remain limited, chronic stress is implicated in
at least some cases of personality-fitness correlations in captive
fishes. This has perhaps been best evidenced where animals
are group housed and competitive interactions are a source of
social stress. For example, in a study of captive Sheepshead
swordtail (Xiphophorus birchmanni), individuals that showed
lower activity levels in open field trials also tended to have
behaviorally dominant personalities, faster growth and longer
lifespan (77). Moreover, the presence of behaviorally dominant
aggressive fish reduced the growth rates, and probably lifespans,
of subordinate tank mates (118). This illustrates an important
consideration, and potential complication for managers: those
individuals (and genotypes) best able to tolerate chronic stress
may sometimes be the same individuals (and genotypes) that are
a major source of stress for conspecifics (119). This may well be
the case if it turns out that bolder personalities are usually more
resistant to chronic stress, since personality research has shown
that—counter to the example provided above—boldness and
aggressiveness are often positively correlated among-individuals
(71, 120, 121). Lessons from salmonid aquaculture are also
informative here. Successful selection for fast growth has led to
correlated increases in boldness, risk taking and aggression in
farmed fish, creating a social environment that is detrimental
to the welfare of more risk averse, less aggressive individuals
(94, 122). Quantitative genetic models developed for application
to social interactions in pigs and poultry offer practical ways
forward (123, 124). A full treatment of this topic is beyond
the scope of this article, but a key lesson is that in selecting
to improve welfare outcomes, it will sometimes be necessary
to jointly consider—and balance—a genotype’s susceptibility to
chronic stress with its propensity to cause chronic stress.

What makes a good biomarker for
improving chronic stress resistance?

We have argued that captive populations of fishes
ubiquitously harbor among-individual differences in personality
that is underpinned, at least in part, by genetic factors. We
have also argued that personality can be understood as one
component of an integrated stress response, and that (genetic)
variation in the acute stress response is expected to predict
susceptibility to adverse effects of chronic stress. We now
need more empirical studies, across a range of species and
contexts, to verify the predicted associations between individual
personality and welfare-relevant outcomes. If the goal is
genetic improvement of welfare outcomes, these studies will
need to employ quantitative genetic approaches to assess
whether, and to what extent, targeted indicators are heritable
and evolvable. This of course means choosing and measuring
appropriate welfare indicators, which is challenging in its

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2022.1046205
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Prentice et al. 10.3389/fvets.2022.1046205

FIGURE 2

Example from a recent study of stress-related behavior and glucocorticoid response in Trinidadian guppies (Poecilia reticulata) by Houslay et al.

(67). (A) Individuals from a pedigreed population were observed repeatedly in open field trials (OFTs). Blue track shows a summary of individual

movement over the trial period; red rectangle indicates the overlaid zoning (inner or middle zone vs. outer zone). (B) Individuals were also

measured repeatedly for their free circulating cortisol response to a mild stressor of handling and isolation. (C) Points show (predicted) genetic

deviations from the overall means for time in the middle (x axis) and ln-transformed cortisol (y axis) of this pedigreed population. Horizontal and

vertical error bars around each point show standard errors on these estimates. The black line shows the regression line, calculated as

cov(y,x)/var(x) from the genetic variance-covariance matrix estimated in a multivariate animal model. Data redrawn from Houslay et al. (67) with

permission. Photograph by T. Houslay. P. reticulata silhouette by Ian Quigley used under Creative Commons Licence BY-NC-SA 3.0 (https://

creativecommons.org/licenses/by-nc-sa/3.0/).

own right (8, 125). In practice three broad approaches to
defining fish welfare are common (126, 127): “feelings-based”
approaches that focus on subjective mental state and aim
for animals to be free from negative experiences such as
pain, fear or distress; “nature-based” approaches that seek
to ensure expression of natural behaviors; and “function-
based” approaches that emphasize the ability to adapt to
the present environment such that animals are in good
health and capable of homeostasis. In practical terms, the
third approach will generally be easiest, as many functional
indicators such as growth, mortality, disease incidence
and reproductive performance are already monitored in
fish populations.

Assuming genetic potential for improvement is present,
selection on behavioral biomarkers offers several advantages—
at least in principle—relative to alternative phenotypic targets.
First, it would allow selection for chronic stress resistance
without having to impose chronic stress and cause adverse
effects. Importantly, while chronic stress exposure is the largest
threat to welfare in intensive fish husbandry systems (4,
125), there is no expectation that occasional acute stressor
exposure causes lasting harm to health. Indeed adverse effects
have not been generally detectable using standard assays of
personality variation. Second, increasingly widespread use of

video tracking (18, 128) means high-throughput phenotyping
is easier and cheaper for behavior than for stress-related
physiological traits. Low cost camera setups exist (129) and
robust open source tracking software is now available [e.g.,
(130)], reducing entry costs and meaning there should be few
ongoing consumables once phenotyping systems are established.
Set against these advantages are some very real challenges
in developing appropriate behavioral biomarkers. We think
these challenges will be best met by combining expertise of
behavioral ecologists, quantitative geneticists, veterinary and
welfare scientists, and—perhaps most critically of all—the
facility and technical staff working to promote welfare on
a daily basis. Simplistically, a useful biomarker must allow
accurate selection of individuals with genotypes conferring
high chronic stress resistance. However, it must also be
practicable, allowing low cost high throughput phenotyping
that is easy to integrate with existing husbandry practices.
Inevitably, these two requirements will sometimes trade-off
and compromise will be needed. Nonetheless, it is possible—
and we hope useful—to identify the key features of an ideal
behavioral biomarker:

(i) Heritable and genetically correlated with target

welfare indicator(s)
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These criteria must be met if selection on a biomarker
is to produce an evolutionary response. All else being equal,
the more heritable the biomarker is—and the stronger the
genetic correlation with welfare indicator—the more accurate
the selection and the faster the genetic improvement in welfare.
The expected rate of improvement also depends on the intensity
of selection, and the level at which selection on phenotype
is performed. Behavioral ecologists typically think of (natural)
selection acting at the among-individual level, but among-family
or within-family artificial selection schemes are often used in
aquaculture for practical reasons (131). Relative to selecting
on phenotype alone, the accuracy of selection can be greatly
improved by use of genomic data (32), and/or pedigree-based
methods of predicting genetic merit. We acknowledge that, in
principle, genomic selection to improve welfare traits is the
“gold standard” and may have little to gain from integration
of behavioral data. However, in practice associated costs mean
genomic selection is not generally accessible beyond high value
commercial species. Moreover, we note that even relatively
low accuracy selection may produce very tangible gains. For
example, many fish species used in scientific research (e.g.,
medaka, zebrafish, and guppies) are maintained at high effective
population sizes (meaning selection gains are less likely to be
lost by drift) and have short generation times (meaning modest
gains per generation can accumulate more rapidly over annual
time scales).

(ii) Generalizable—across environments, populations

and species

Ideally, a behavioral predictor developed and validated
in one population would also be a useful tool to improve
welfare in others. The extent to which this may or may not
turn out to be the case is unknown. Although the behavioral
ecology literature has often emphasized the idea of a discrete
set of latent personality traits or axes that are conserved
across taxa, many (including ourselves) consider this more as
an organizing framework than an empirical reality. Here we
have focused on shy-bold type variation as being analogous
to the behavioral component of stress response, but we do
not know if, for example, shy or bold individuals will be
generally more robust to chronic stress exposure. Moreover,
we know that, even if subjected to a single standardized assay
in a controlled environment, the amount and/or structure of
behavioral variation among-individuals is likely to differ among
populations and species [e.g., (60)]. We also know that among-
individual variation can be a function of environmental context
(132), and exposure to stressors can alter behavior-physiology
relationships (133). In this context the question is not really
whether a biomarker that is optimized for one scenario will be
similarly ideal for all other—it will not be. However, the hope
is that at least some limited generality emerges such that tools

developed in one population provide useful starting points for
improving welfare in others.

(iii) Measurable in early life

Shy-bold type variation can readily be detected in fishes
at young ages. An inability to tag small individuals for
identification has limited the ability to estimate among-
individual variation directly but in open field trials differences
in mean behavior have been found among strains of zebrafish
embryos at 12 days post-fertilization (134), and among guppy
families aged between 35 and 55 days (78) (Figure 3). This
means selection on behavioral biomarkers could be conducted
in early life, reducing the need to raise larger number of fish
and decreasing associated financial costs. Although individual
personality differences can be broadly stable across ontogeny in
some cases (46) this may not be generally true (135), which raises
two practical considerations. First, if components of variance are
age (or life-stage) specific then a chosen biomarker may be more
repeatable (and/or heritable) at some ontogenetic stages than
others. This means the ability to usefully discriminate among
individuals may depend on the age at which behavioral assays
are performed. Second, if individuals and genotypes change
rankings over ontogeny (e.g., some genotypes predisposing to
boldness in early life but shyness later, and vice versa) then it
is possible that the sign—as well as magnitude—of the genetic
correlation between the target welfare indicator could actually
depend on age. Although this would be an extreme scenario it
highlights that—while the ability to select early in life is useful—
the extent to which early life behavioral phenotype effectively
predicts later life stress resistance needs to be checked.

(iv) Simple, fast, and cheap to measure

Behavioral ecologists deploy various simple behavioral
assays—either singly or in combination with each other—to
investigate shy-bold type personality variation in fishes (136,
137). These commonly include open field tests, emergence tests
(in which willingness to leave a shelter and enter a potentially
risky environment is assayed), novel object trials (in which
willingness to investigate an unfamiliar object is tested). Tests
of responses to simulated predation attempts are also used in an
ecological context (47). Added to this are protocols developed
by biomedical researchers to assay “anxiety-like behavior” in
fish [e.g., by testing dark/light preference or scototaxis; (138)].
In general, all tests are simple and quick by design, and
most allow data extraction and processing that can be at least
semi-automated (e.g., by using video tracking software coupled
to cameras).

For current purposes the “best” assay will be one that
yields predictive biomarkers of welfare outcomes in a target
stock, but is also scalable to suit the needs and resources of a
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FIGURE 3

Among-family variation in boldness in juvenile guppies. (A) Using a simple scototaxis assay for anxiety like behavior juvenile guppies are

individually transferred to cylinder and then released into a 5 × 5cm arena equally divided into black and white sections. A camera placed above

allows video tracking and measurement of boldness. Here we define a simple boldness score from a 300 s observation period as time over light

background –time over dark background (such that higher values indicate greater preference for light background). (B) Individual observations

(grey points) on 149 fish from 24 families (of 1–33 o�spring, mean brood size = 12) aged 2–14 days (with a of 6 days). Fish consistently prefer

the dark background (negative boldness scores), with dashed line at boldness = 0 corresponds to no preference. However, mean behavior also

varies significantly among-families (black points and associated error bars depict family means with 95% CI; tested conditional on age, F23,124 =

1.71, P = 0.034) consistent with genetic variation for boldness.

particular facility. In exploring options to achieve this, several
points are worth bearing in mind. First, behavioral data should,
where possible be collected on continuous rather than binary
or categorical scales. So it is better, for example, to record the
time taken for an individual to emerge from a shelter rather
than simply whether or not it did emerge. This is because
it contains more information and is almost always easier to
analyze. Second, recording multiple behavioral proxies from
a single assay can be very helpful. For example, in guppies
tracked in an open field arena, high distance swum over a short
observation period can be indicative of systematic exploration
by putatively unstressed fish, or of a “flight-type” stress behavior.
These possibilities are readily distinguished by jointly extracting
multiple behaviors from the tracking data since, for example
high activity coupled to thigmotaxis is diagnostic of a flight
response in this species (67). Multivariate behavioral data can
be reduced to a scalar measure prior to analysis using simple
dimensionality reduction techniques like principal component
analysis (PCA). However, in practice this may not be desirable
since it involves loss of information and a better strategy will
usually be to regress multiple predictor behaviors on the targeted
welfare indicator. The partial regression coefficients of each trait
on the welfare indicator could then be used as weightings in a
linear selection index (56). This process is directly analogous to
the standard strategy used by evolutionary ecologists in which
multiple regression of traits on fitness is used to estimate the

vector of linear natural selection (90). Where repeat measures
and/or pedigree data are available then established mixed
model strategies to estimate these partial regressions at the
among-individual and additive genetic levels are already readily
available (139, 140). The key idea here is that while the simplicity
of using just one behavior (or composite trait defined using
PCA) is appealing, it is generally the case that using more
information to inform selection will yield better results.

Third, and finally, in adopting methods from animal
personality research we must avoid the trap of being constrained
by its conventions. Following the definition of personality
as behavioral differences that are consistent across time and
context, many behavioral ecologists take the view that multiple
observations on individuals are essential to work on this topic
[see (141) for a balanced discussion on this]. Since absolute
sampling effort is limited (e.g., by researcher time) power
analyses are particularly useful to balance the inevitable trade-
off between sampling more individuals and obtaining more
repeats per individuals [e.g., (142)]. However, in the present
context, the primary value of multiple observations is practical
not conceptual; repeated observations of a biomarker allow
more accurate selection because averaging across multiple
observations within an individual reduces the signal of
measurement error and short term plasticity. The degree of
benefit depends on the number of repeats—more is always
better but the returns are diminishing. It also depends on
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the trait’s repeatability—less is gained by obtaining multiple
observations on a trait known to have high R (56). However,
repeated measures designs usually require individuals to be
tagged for identification purposes which imposes costs. They
also requires repeated handling of animals that could actually
cause adverse effects. Thus, while more accurate selection is
desirable, obtaining repeated measures on individual fish is not
actually essential if practical constraints make it prohibitive.

Conclusion

Rapid increases in aquaculture production for food, and in
the use of fish models in scientific research mean that more fish
than ever are being housed in captivity. Consequently there is
a need to develop and implement strategies that protect welfare
by reducing adverse effects of chronic stress. Here we have used
insights from the study of “animal personality” to show how, and
why, selection on behavioral biomarkers could be used to reduce
chronic stress susceptibility and improve welfare outcomes
across cultured fish species. This potential exists because:
(1) captive populations of fishes harbor among-individual
differences in personality that are underpinned by genetic
factors; (2) personality can be understood as one component
of an integrated acute stress response; and (3) differences in
acute stress response phenotypes will predict differences in
susceptibility to adverse effects under chronic stressor exposure.
With these three conditions met then (4) integrating behavioral
biomarkers into selective breeding programs offers a route to
genetic improvement of chronic stress resistance. In seeking to
stimulate discussion among researchers with different areas of
expertise we have focused our arguments on broad principles
and acknowledge that our treatment of some technical topics
(e.g., design of selection strategy) is somewhat superficial—but
we hope accessible—as a consequence. We also acknowledge
that further empirical studies are needed and, in particular,
estimates of the quantitative genetic (co)variance structure
between shy-bold type behaviors and defined welfare indicators
would be very valuable. More widespread collaboration between
behavioral ecologists and geneticists will allow us to better
determine the potential for welfare gains across species and
populations. However, realizing those gains will then require

input and technical expertise from aquarists and facility staff

to develop phenotyping platforms and selection strategies that
are not just effective, but are also practical and cost effective to
embed into breeding programs.
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