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Abstract

Disease and parasitism cause major welfare, environmental and economic concerns

for global aquaculture. In this review, we examine the status and potential of technol-

ogies that exploit genetic variation in host resistance to tackle this problem. We argue

that there is an urgent need to improve understanding of the genetic mechanisms

involved, leading to the development of tools that can be applied to boost host
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901631; Norges Forskningsråd, Grant/Award

Numbers: 244131, 320619 resistance and reduce the disease burden. We draw on two pressing global disease

problems as case studies—sea lice infestations in salmonids and white spot syndrome

in shrimp. We review how the latest genetic technologies can be capitalised upon to

determine the mechanisms underlying inter- and intra-species variation in pathogen/

parasite resistance, and how the derived knowledge could be applied to boost disease

resistance using selective breeding, gene editing and/or with targeted feed treat-

ments and vaccines. Gene editing brings novel opportunities, but also implementation

and dissemination challenges, and necessitates new protocols to integrate the tech-

nology into aquaculture breeding programmes. There is also an ongoing need to mini-

mise risks of disease agents evolving to overcome genetic improvements to host

resistance, and insights from epidemiological and evolutionary models of pathogen

infestation in wild and cultured host populations are explored. Ethical issues around

the different approaches for achieving genetic resistance are discussed. Application

of genetic technologies and approaches has potential to improve fundamental knowl-

edge of mechanisms affecting genetic resistance and provide effective pathways for

implementation that could lead to more resistant aquaculture stocks, transforming

global aquaculture.

K E YWORD S

gene editing, genomic selection, host resistance, sea lice, transcriptomics, white-spot syndrome
virus

1 | INTRODUCTION

‘Blue foods’ have been highlighted as a major source of nutrients sup-

porting the health and livelihood of many communities throughout

the world.1 Aquaculture, currently the fastest growing food produc-

tion industry, plays a key role in producing and supplying fish, shellfish

and algae. However, the mass culture of animals in any environment

carries with it a high risk of contracting, propagating and spreading

infectious disease.2,3 Some diseases affecting fish and shellfish can

lead to 100% mortality or necessitate complete destocking. Disease

prevention and treatment are necessary, but current options are often

costly, ineffective and can negatively impact animal welfare, local eco-

systems and product quality. For example, biosecurity is particularly

challenging when animals are farmed in an open water system, and

logistical difficulties in handling makes it challenging to vaccinate and

treat individual animals. Here, we focus mainly on the improvement of

host disease resistance which can be defined as the host's ability to

reduce pathogen invasion (i.e., limiting pathogen entry into target tis-

sues and replication).

Vaccination has proven to be an effective preventative measure

boosting immunity for many major diseases affecting humans (e.g.,4),

domestic animals and livestock including fish.5–12 In some instances,

total eradication of human or livestock disease has been possible

through the implementation of vaccination programmes.13,14 How-

ever, vaccines are difficult to develop against some diseases, espe-

cially against ectoparasites such as sea lice (crustacean copepods) or

amoebae.15 Moreover, vaccination has limited success for host

species with a less developed adaptive immune system such as crusta-

ceans or molluscs.16 Additional tools for improving host resistance are

therefore needed. In this review, we describe the use of genetic tech-

nologies that can exploit and potentially also create genetic variation

in disease resistance. Such approaches can both provide a greater

understanding of the natural mechanisms affecting disease resistance

and can be used to boost host resistance and thereby reduce the

impact of infectious diseases in aquaculture. The high fecundity of

aquatic species leads to opportunities for rapid propagation and dis-

semination of strains with improved innate disease resistance.

Two of the most valuable global aquaculture species are salmon

(with 2.6 million tonnes yearly production of Atlantic salmon, Salmo

salar, valued at US$ 17 billion in 2019) and shrimp (with 6.2 million ton

of both whiteleg shrimp Litopenaeus vannamei and black tiger shrimp

Penaeus monodon valued at US$ 38.5 billion in 2019).17 The intensifica-

tion and global nature of both Atlantic salmon and shrimp farming have

led to major challenges in the form of infectious diseases. Currently,

sea lice in Atlantic salmon and white spot syndrome in shrimp are two

of the most pressing problems for these aquaculture industries.

Sea lice (Caligidae) are marine ectoparasitic copepods that attach

to host organisms and feed on mucus, skin and blood. Most lice spe-

cies have a free-swimming planktonic larval phase (copepodid) that

facilitates host-finding, and once attached to a host, they undergo

two further moults through sessile (immobile) stages before reaching

mobile pre-adult stages that can move around the host and exhibit

host-switching behaviours. They then become adults, reproducing

sexually on the same host and releasing fertilised eggs into the water
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column.18–20 Sea lice have been found on numerous species of wild

and farmed fish, and while the prevalence may be high, infestation

densities are usually low and have relatively minor impacts on produc-

tion or animal welfare (e.g.,21–23). The Atlantic salmon farming indus-

try is one notable exception in which infestations can be severe and

lead to poor welfare and mortality for farmed fish.24–26 Strict delous-

ing regimes are used to keep lice infestation intensities low, but some

delousing regimes (involving crowding, pumping and lice removal

effects) can pose severe welfare risks.27–29 The lice larvae produced

on-farm can also infest wild salmonid populations.30–35 Sea lice cost

the Norwegian salmon sector at least 7.3 billion kroner (�US$ 810

million) per annum36 (up from US$ 435 million estimated for 201137)

and are of major concern for other salmon industries around the

world. The welfare and economic impacts of louse parasitism are pre-

dicted to be even worse with higher seawater temperatures.38–40

Lepeophtheirus salmonis is the louse species currently of greatest con-

cern in Norway, but Caligus elongatus has become an increasing prob-

lem (particularly in northern latitudes,41) and Caligus rogercresseyi is of

great concern in Chile.42–44 Lice control measures entail substantial

costs,45 with no single method proving completely effective,46 and

moreover, lice have already evolved resistance to some methods of

control (reviewed in Reference [47] e.g.48). Repeated reintroduction

of high-density naïve salmon hosts to sea cages is effectively a serial

passage experiment that disproportionately favours the parasite's

adaptation to treatments.49 There is an urgent need to develop new

strategies to mitigate the impact of sea louse parasitism.

White spot syndrome virus (WSSV) causes devastating disease

that severely impacts global shrimp aquaculture.50 All decapod crusta-

ceans, including all major cultured shrimp species, are affected by

WSSV, and disease outbreaks typically cause mass mortality within a

few days.51 Elimination of the virus from the open pond systems in

which shrimp are extensively grown has not been possible.52 Despite

the lack of an adaptive immune system, stimulation of the innate

immune system of shrimp by immune priming shows promise but has

not yet been proven to prevent and control disease in the field.53–55

These two infectious diseases have a large impact on these aquacul-

ture sectors, but similar disease problems affect all aquaculture species

with devastating consequences.56,57 Alternative measures for preventing

infestation and infection are needed. Modern genetic and genomic tech-

nologies and methodologies can help us understand why some individ-

uals, strains and species have higher inherent abilities to resist certain

diseases. Such knowledge can be applied to boost the ability of farmed

fish and shellfish to resist disease and reduce the burden of infectious

diseases in aquaculture. Here, we will review the recent application of

these technologies and explore their potential to improve the resistance

of aquaculture stocks to infectious diseases in the near future.

2 | IMPROVING HOST RESISTANCE AS A
PREVENTATIVE MEASURE

Genetic improvement by selective breeding is playing a crucial role in

helping aquaculture meet future demands for animal protein,58 and

research into the genetics of disease resistance has played a major

role in ensuring the health and security of aquaculture stocks.59 The

level of host susceptibility or resistance is usually influenced by many

genes each contributing small additive effects (also known as a poly-

genic trait). Disease resistance is usually heritable,59 with moderate to

low heritability estimates for resistance to sea lice in Atlantic salmon

(0.360; 0.26–0.3361; 0.02–0.1462; 0.2263; 0.14–0.4364; 0.2865; 0.22–

0.3366) and WSSV in shrimp (0.01–0.31,67–71). The potential for

improving lice resistance through selective breeding is substantial as

the coefficient of variation in lice count per fish is very high ranging

from 60.5 to 95.0.61 These are within-population estimates of herita-

bility, but there are also very clear differences across species in sus-

ceptibility to parasitism and disease. For example, some salmonid

species (e.g., coho Oncorhynchus kisutch and pink Oncorhynchus gor-

buscha) have a higher innate ability to resist sea lice infection than

others (e.g., Atlantic salmon Salmo salar, chum Oncorhynchus keta and

rainbow trout Oncorhynchus mykiss).72–75 Thus, there is genetic varia-

tion for resistance both within and between species that can be

exploited for tackling this infectious disease.

For lice resistance, a key breeding objective trait of importance is

the number of lice treatments in a production cycle (or per year) at a

farm. This is determined by the treatment threshold used (the maxi-

mum number of adult female lice per fish), intensity of lice infestation

and the host resistance to sea lice. A strong treatment threshold may

introduce more frequent lice treatments and thus higher costs. Due to

rules requiring a low threshold for delousing, it is not likely that a

reduction in the number of lice treatments can be observed at a farm

level over a few generations of selection. Therefore, breeding compa-

nies are reluctant to put too much weight on the lice resistance trait

as this will result in reduced genetic gain for the other traits selected

that pay off within a shorter time horizon. However, such a reduction

is expected to be seen at a company, and in particular, at a national

level. Furthermore, as direct selection for reduced number of lice

treatments is not possible to apply, indirect selection through reduced

lice counts per fish, or lice density obtained from a controlled chal-

lenge test, must be used instead, but this is often less efficient than

direct selection.

We also need to be sure that the selection or intervention applied

adequately covers interactions occurring at all relevant life stages of

the pathogen and the host. In the case of salmon lice, the genetic cor-

relation between the number of attached and adult lice counted at

different times has been found to be high,62 and there is also a docu-

mented high genetic correlation between the number of lice per fish

recorded at two subsequent challenge tests with de-lousing after the

first,64 as well as a high genetic correlation between the number of

lice recorded on the same fish in two different times of the year

(Gjerde, Pers. comm.). These results show that selection for increased

resistance to lice based on lice count per fish or lice density will pro-

vide increased resistance to relevant life stages of the lice at relevant

life stages of the host.

The long-term objective of selection for increased pathogen resis-

tance is to develop a host that the pathogen does not infect under

field conditions so that the pathogen will not be able to reproduce

ROBINSON ET AL. 493
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and spread in farmed and close by wild host populations. Genetic cor-

relations between disease resistance in a challenge test tank and

under conditions in the field vary depending on the disease and are

influenced by many different environmental factors. High correlations

have been reported for host resistance to sea lice62 and to furunculo-

sis caused by the bacterium Aeromonas salmonidea,76 and they are

also likely high for host resistance to WSSV (near identical genetic

ranking for survival rate among susceptible and resistant lines,77). This

is encouraging as selection for WSSV or sea lice host resistance based

on controlled challenge test data should benefit the farmers that uti-

lise selected seedstock. On the other hand, low genetic correlations

between tank and field challenges have been detected for some other

parasitic diseases (e.g., amoebic gill disease in Atlantic salmon78).

Major challenges to genetic improvement of host disease resis-

tance could be caused by trade-offs between resistance, transmissibil-

ity and growth. For instance, in shrimp, there is a clear negative and

thus unfavourable genetic correlation between resistance to WSSV

and growth rate (�0.55 to �0.64,69,71). In Atlantic salmon, the genetic

correlation between resistance to sea lice and growth rate (�0.32 to

�0.37) is also reported to be unfavourable62 implying that both traits

need to be recorded and selected to obtain desired genetic gains for

both growth rate and sea lice resistance. Another important issue that

is seldom considered when selecting for improved disease resistance

is possible trade-offs between host resistance, tolerance and infectiv-

ity. Animals with high tolerance could survive longer and thus be able

to transmit infectious pathogens for longer.79 In such instances,

genetic improvement of host tolerance might not lead to beneficial

epidemiological effects.

To make genetic gains in disease resistance, it would be desirable to

breed from survivors to a disease if it were not possible for the survivors

to transmit and propagate the disease further in the host population (i.e.,

hosts surviving WSSV can transmit disease). In such cases when trans-

mission and propagation of the disease by survivors is a risk, selective

breeding programmes are restricted to selection of uninfected breeding

candidates (kept in a bio-secure breeding nucleus). In the past, this selec-

tion has been based on the average performance of the infected siblings

to the breeding candidates and it was not possible to capture the within-

family or Mendelian sampling component of genetic variation for sib

recorded traits. Developments in genomics have enabled quantitative

geneticists to exploit the broad genetic variation for host disease resis-

tance that exists within families in these circumstances.

Marker-assisted selection was initially touted as a technology of

great promise for genetic improvement. However, because most dis-

ease traits measured to date are polygenic, and therefore single

genetic markers (or single quantitative trait loci [QTL]) generally

account for a small fraction of the overall genetic variation, there are

few examples where the application of marker-assisted selection has

resulted in realised genetic gains larger than expected when using tra-

ditional pedigree-based selective breeding. A notable exception where

marker-assisted selection has had a demonstrable large benefit in

aquatic species is in resistance to infectious pancreatic necrosis in

Atlantic salmon, where a single gene accounts for a large proportion

of the overall genetic variation.80–82 Nonetheless, while the potential

value of genomic intervention needs to be assessed for each target

trait and culture environment, the latest methodologies for utilising

genomic information (i.e., genomic selection,83) have been predicted

to have high potential benefit for disease resistance and other traits

that cannot be recorded on the breeding candidates,84 many of which

are known to be polygenic in nature and difficult to directly assess on

unexposed animals.

Finally, recent developments in genomic technologies provide

opportunities to better understand the genetic mechanisms affecting

the differences in host resistance between and within species. Not

only can these technologies improve our understanding of the mecha-

nisms involved, but they can help develop tools that could be used to

reduce the impact of infectious diseases. For instance, using clustered

regularly interspaced short palindromic repeat (CRISPR-Cas) genome

editing technology provides a way for making targeted changes to

genes found to influence host resistance.85 However, the implementa-

tion of these technologies, and dissemination of genetically improved

fish and shellfish for production by the industry, needs to be carefully

considered to avoid potential negative environmental consequences

(e.g., escapees interbreeding with wild counterparts) and counter-

adaptation by disease agents. All of these issues need to be addressed

to devise an ethical and sustainable long-term strategy for eliminating

or reducing pathogen infection. As farmed hosts such as Atlantic

salmon can be a major propagator, and hence, driver of disease,34

such a strategy should also have long-term benefits in providing a

form of ‘herd immunity’ for naturally existing populations of host spe-

cies that inhabit areas close to major aquaculture environments.

3 | BIOLOGICAL MECHANISMS
AFFORDING HOST RESISTANCE

Host resistance to infection and parasitism is highly complex and most

likely determined by a range of responses (Figure 1), and indeed

research across a range of fish species has identified broad potential

mechanisms affecting host resistance.86 Comparatively less is known

about the biology of resistance to disease in invertebrates (e.g.,

shrimp, Figure 2).

3.1 | Immune and cellular response to infection
and infestation

The innate immune system provides a pivotal first defence against

invading pathogens and exists across invertebrate and vertebrate

organisms (e.g., proposed innate immune response to WSSV in

shrimp, Figure 2). Most organisms possess cellular receptors, which

bind to foreign elements and differentiate self from non-self. These

pattern recognition receptors (PRRs) recognise pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular pat-

terns (DAMPs). There are several classes of PRRS, including Toll-like

receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors

(RLRs), each recognising distinct microbial components and directly

494 ROBINSON ET AL.
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F IGURE 1 Exploring the genetic basis of mechanisms providing host resistance. Host resistance to sea lice is likely affected by environmental
and dietary factors that enhance or suppress salmon immunity, the immune cellular response (adaptive and innate immune systems), kairomones
that attract the lice to the host and proteins that are secreted by the louse and suppress or trigger host immunity (red text). More detailed
processes and factors likely to promote host immunity in coho, pink and more resistant strains of Atlantic salmon are listed in green text. To
search for genes in the host that are up- or down-regulated at key time points post-infection: (1) genome-wide association studies can identify
genes mapping to chromosomal regions associated with host resistance, (2) single nuclei RNAseq (snRNAseq) can be used to study which
populations of cell types are responding in host tissue close to the interface between the salmon and the louse, (3) spatial transcriptomics and
spatial proteomics can be used to map precisely where the response occurs, (4) proteomics can be used to discover interactions between host cell
and lice immunomodulatory proteins (suppressing or triggering host immunity), (5) RNAseq can be used to study semiochemical production by the
host and transcriptomic response of the louse in response to kairomones, and, (6) gene editing can be used to test putative genes affecting host
resistance, by experimentally challenging edited and non-edited salmon with sea lice and comparing counts of attached lice

ROBINSON ET AL. 495
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activating immune effector cells. Whether hemocytes of crustacea, or

macrophage/dendritic/B-lymphocytes of teleosts, these phagocytic

cells eliminate potential pathogens and act as the bridge to adaptive

immune activation in vertebrates.

Large differences in the louse settlement success, host immune

response and consequent infection of different salmon species are

observed after exposure to sea lice.73 Although counts of settled

copepodids can be initially similar in Atlantic, chum, coho, pink salmon

and rainbow trout in experimental challenge tests, the intensity of

infection drops in the resistant Pacific species in the first days post-

challenge.72 Coho and pink salmon mount a more effective response

in the skin where the lice attach than Atlantic salmon, despite rapid

and large-scale immune gene activation in the skin of Atlantic

salmon,65,87–93 suggesting that resistance is determined by the char-

acter rather than magnitude of response. Resistance to the parasite

seems a highly complex biological process. Within 24 h of parasite

settlement coho salmon exhibit a multifocal inflammatory granulocytic

infiltration, associated with a pronounced non-specific epithelial

hyperplasia and melanin deposition over the coming days. Epidermal

hyperplasia is intensified and accompanied by eosinophilic granular

cell infiltration by 7 days and encapsulation of the parasite by 10 days

post infestation, with limited pathology thereafter.94

In contrast, this response is not observed in pink salmon (also

highly resistant), which instead develop a rapid inflammatory

response.74,95 Tadiso et al.93 found transient increases of mannose-

binding receptors and C-type lectins in Atlantic salmon skin, yet these

were minor and largely absent after 3 days post-infection. In coho

salmon, local and systemic induction of chitin, mannose and other

non-self PRRs initiate the acute inflammation preceding louse encap-

sulation and rejection. Similarly, whereas acute phase response genes,

extracellular matrix (ECM) and tissue remodelling matrix metallopro-

teinases (MMPs) are all down-regulated in this time frame for Atlantic

salmon, they are upregulated in Coho salmon.96–98

Although Atlantic salmon develops a rapid local and systemic tran-

scriptomic response to L. salmonis, this does not result in substantial

levels of protection in most individuals,93 and immunomodulation by

the parasite has been suggested to play an important role in the early

stages of louse attachment.74,99–106 A range of anti-host proteins,

including proteolytic enzymes and prostanoids, are secreted by a vari-

ety of louse exocrine glands and pass to host tissues from the point of

louse attachment. These serve to suppress host immune responses dur-

ing the initial stages of attachment107–109 and different protease pro-

files have been identified between excretory/secretory (E/S) products

from pre-adult and adult L. salmonis.110 Host- and context-specific

expression of genes in the louse (e.g.,111–113) may also provide a key to

understanding species-specific levels of host resistance.

Similarly, infection with WSSV in shrimp results in a complex

range of host-pathogen interactions in humoral and cellular pathways

(Figure 2). The virus may enter the cell by several endocytic routes,

and after this Toll and immune deficiency (IMD) signalling pathways

are activated resulting in the up-regulation of the NF-kB transcription

factors Dorsal, Relish and AP-1 that increase the expression of antimi-

crobial peptides (AMP).114,115 To date, several classes of AMPs or

effectors have been identified in shrimp: Penaeidins (PEN), Crustins

(Cru), anti-LPS-factors (ALF), C-type lectins (CTL), Lysozymes (Lyz),

and thioester-containing proteins (TEP).116,117

F IGURE 2 Simplified diagrammatic representation of the proposed immune response to white spot syndrome virus (WSSV) in shrimp. WSSV
enters the cell using endocytic routes and induces both humoral and cellular responses from the host. Toll and immune deficiency (IMD)
pathways are activated and dorsal and relsh are translocated to the nucleus inducing the expression of antimicrobial peptides that limit viral
replication. C-type lectin proteins can neutralise WSSV by binding to envelope proteins. Interestingly, WSSV is able to hijack the humoral
pathways in order to facilitate its replication

496 ROBINSON ET AL.

 17535131, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12733 by T

est, W
iley O

nline L
ibrary on [25/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WSSV has also been shown to immunomodulate the shrimp

response. Inhibition of the NF-kB signalling is achieved by encoded

microRNAs (WSSV-miR-N13 and WSSV-miR-N23), which can target

Dorsal.118 WSSV also modulates the Toll dorsal pathway at different

levels, for example, the WSSV449 protein; homologous to tube insect

protein, can activate NF-kB to trigger promoters of viral genes such as

wsv069, wsv303 and wsv371.119

Another pathway relevant to the immune responses of both

invertebrates and vertebrates is the JAK/STAT pathway. In shrimp,

activation of the JAK/STAT pathway by bacterial challenge increases

expression of AMPS ALF-A1, ALF-C1, ALF-C2, CruΙ-1 and CruΙ-5.120

Upon WSSV infection in shrimp the expression of phosphorylated

STAT is upregulated, and STAT is translocated to the nucleus. How-

ever, the binding motif of STAT binds to the WSSV 1E1 promoter

region facilitating, instead of inhibiting, viral replication.121

Apoptosis also plays a critical role in vertebrate and invertebrate

defence against viral pathogens. In insects, apoptosis has an antiviral

action to control viral pathogens,122 in shrimps, however, the role of

apoptosis during WSSV infection is not clear. The viral accommodation

theory says that apoptosis can be used by the virus to promote infec-

tion and that reduced rates of cell death can be the cause of the reduc-

tion of viral pathogenicity in shrimps.123 However, other reports have

shown that cells displaying nuclear condensation and fragmentation

characteristics of apoptosis did not contain WSSV virions, whereas

those containing WSSV virions were not apoptotic,124,125 suggesting

that WSSV is able to inhibit apoptosis of infected cells. Several mecha-

nisms have been identified, with caspases as the main target of viral

proteins. The viral protein AAP-1, encoded by WSSV449, contains two

putative caspase-9 cleavage sites, VETD233G and LEHD303G, as well

as a caspase-3 cleavage site, DEVD272G. WSV222, which is an E3 ubi-

quitin ligase, blocks apoptosis through the ubiquitin-mediated degrada-

tion of the shrimp pro-apoptotic TSL protein.126

A holistic approach using ‘omic’ technologies (including metabo-

lomics127 and glycomics128 which are not detailed in this review)

could help elucidate the complex interaction between WSSV and the

crustacean host. WSSV has been shown not only to modulate the

hosts immune response, but also to interfere with shrimp cell metabo-

lism, being the first invertebrate virus known to induce aerobic glycol-

ysis in infected cells (Warburg effect)129 via the PI3K-Akt- mTOR

pathway, which is activated upon WSSV infection. Metabolic repro-

graming induced by WSSV involves glycolysis, the tricarboxylic acid

(TCA) cycle, glutaminolysis and lipid metabolism130 (Figure 3). Su

et al.131 demonstrated that pre-treatment of shrimp with a PI3K inhib-

itor was associated with a decrease in WSSV gene expression and

copy number, indicating the WSSV-induced Warburg effect is impor-

tant for successful viral replication. Hypoxia-inducible factor-1 (HIF-

1), a transcriptional factor that regulates the expression of several gly-

colytic genes, is also involved in the metabolic reprogramming induced

by WSSV. HIF-1 silencing in WSSV-infected shrimps blocks the upre-

gulation of the glycolytic enzymes HK, PFK and PK and the expression

and activity of LDH, increasing survival of the infected animals.132

Immune training or priming using heat-killed pathogens, heat

shock proteins or poly(I.C) mimicking double-stranded viral RNA can

trigger strong effector immune responses in invertebrates53,55,133–135

and knowledge about specific gene products with potential high effi-

cacy for immune priming resulting in disease resistance is needed.

3.2 | Semiochemical production

Another important consideration is the question of what attracts par-

asites to a particular host or deters parasites from infecting other

hosts or non-hosts. Semiochemicals are chemical substances released

by one organism that affect the behaviour of other organisms. Semio-

chemicals that attract another species and harm the emitting host

species are known as kairomones whereas those that deter the other

species and benefit the emitting host species are known as allomones.

Copepodids suspended in the water column detect and show a posi-

tive rheotactic response to nearby hosts guided by chemical and

mechano-sensory clues.136–140 Host-derived kairomones (reviewed in

Reference [141]) play a key role in attracting lice at close distances.138

Silencing of chemoreceptors in copepodids interferes with recognition

of the host.142,143 L. salmonis is highly host-specific, largely infecting

fish of Salmo and Oncorhynchus genera with different rates of success,

whereas C. elongatus parasitizes more than 80 marine fish species.144

This suggests a combination of species-specific kairomones that

attract L. salmonis to susceptible species (Salmo spp.) and allomones

that deter L. salmonis from the more resistant species including Oncor-

hynchus spp.141 The evidence also suggests that C. elongatus attracting

kairomones are produced by many species.

Behavioural tests (directional movement of salmon lice and elec-

trophysiology) show that lice are attracted to water conditioned with

salmon and that the effect is associated with the volatile fraction.145

Specific compounds such as isophorone (3,5,5-trimethylcyclohex-2-

en-1-one) and sulcatone (6-methyl-5-hepten-2-one) have been identi-

fied as candidate lice attracting kairomones for Atlantic salmon.140,146

In addition to variation in attractants in the water among and

within species, there is individual variation among hosts with respect

to the production of certain compounds in the mucus. Volatile organic

compounds including 1-octenol-3-ol, 1-penten-3-ol and sulcatone in

the mucus of Atlantic salmon have been found to be associated with

increased sessile lice count.147 These compounds are secondary lipid

oxidation products which have been linked to host identification in

biting insects such as mosquitoes and midges.148–150 The concentra-

tion of these compounds in mucus differs between different families

of Atlantic salmon (37%–58%) fed the same diet and is associated

with higher lice counts in individuals.151

Targeted chemical analysis (e.g.,152) of such mucous compounds

may allow identification of phenotypes that can be used in selective

breeding. More information is, however, needed on the genetic basis

and heritability of the production of semiochemicals for this purpose.

Using genomic or proteomic data to dissect susceptibility to louse

infestation into several underlying and more objective component

phenotypes could potentially offer more specific information to com-

plement and improve the accuracy of selection. For instance, semio-

chemicals that are exuded from the skin in the mucus could be
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sampled non-invasively from the host and could have potential as

markers for selection.

4 | EXPLORING THE GENETIC FACTORS
UNDERLYING HOST RESISTANCE

4.1 | Genomic tool application

Host–parasite and host–viral interactions are extremely complex, and

their study requires a holistic approach involving the use of technolo-

gies that investigate different aspects of the interaction (Figure 1 and

Table 1). Knowledge about the specific genes and mechanisms involved

in providing greater disease resistance are needed, particularly for

potential gene editing applications downstream. In this section, we pro-

vide an overview of the different genomic technologies that can eluci-

date different components of host–pathogen interactions. While the

generation of multiomics datasets is likely to help elucidate host–path-

ogen interactions and other biological processes, extracting meaningful

information from these types of datasets will require appropriate inte-

gration methods. The recent explosion of genomics has led to the

development of multiple methods for the integration of different data,

based on very different approaches ranging from k-means clustering or

linear models to complex Bayesian models.175 The choice of methods

to use for the most common integration challenges will depend on the

types of data and on the availability of already tailored methods. For

instance, single-cell RNA-seq can be easily integrated with single-cell

ATAC-seq or spatial transcriptomics using the freely available R pack-

age Seurat.176 The usefulness of these complex datasets will depend

on our understanding of gene/protein function. Mapping protein inter-

actions will also provide fundamental information that should help

improve our understanding of the relationship between each aquacul-

ture species and its pathogens.177

4.1.1 | Genome-wide association of marker tests

Genome-wide association studies (GWAS) have probably been the most

important contributor to the identification of genes affecting disease

resistance so far (Tables 1 and 2). These approaches detect specific

regions of the genome associated with increased resistance to a disease

(QTL), and rely on the existence of genetic variation in resistance among

the animals of a population. Resistance is typically measured as morbidity

or mortality/survival via controlled disease challenges or natural out-

breaks, although more complex phenotypes such as time to death or

pathogen load are also frequently used. The final goal is to detect major

QTL that can be selected for or against in aquaculture breeding pro-

grammes using associated genetic markers (marker-assisted selection).

However, QTLs with large effects on the trait of interest are infrequent,

and resistance to most diseases is polygenic in nature.242

Although QTL for ‘lice-attracting salmon’ have been found (www.

aquagen.no,65), lice resistance measured as lice count and lice density

seems to be polygenic.243 Efforts to dissect the genetic mechanisms

behind salmon lice resistance have yielded three chromosomal regions

in which there are genes explaining between 7% and 13% of the

genetic variation in resistance to C. rogercresseyi in Atlantic salmon in

Chile.65 The effect of individual QTL on resistance is relatively small,

and therefore genomic selection is preferred over marker-assisted

selection. Knockout or up-regulation of the causative genes via

genome engineering (e.g., gene editing) might provide greater resis-

tance than the causative variants themselves. Gene expression data

and knowledge from other experiments, some comparing the

F IGURE 3 Summary of metabolic effects during early (6–12 h) white spot syndrome virus (WSSV) infection. WSSV triggers aerobic glycolysis
(Warburg effect) via activation of the PI3K-Akt- mTOR pathway. The hallmark of aerobic glycolysis is the high levels of glucose consumption and
lactate production. However other metabolic pathways are also enhanced, including the pentose phosphate pathway (PPP), the lipid metabolism
pathway and the glutamine metabolism pathways. These metabolic changes support the high energy requirements of viral replication
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transcriptome of resistant and susceptible Atlantic salmon (e.

g.,87,90,93), could be drawn upon to identify candidate genes and

potential causative mutations associated with QTL. These could then

be edited using CRISPR/Cas9 to generate beneficial variation de novo

(see below), potentially with a larger effect than the detected QTL.

GWAS has detected several QTL associated with WSSV resis-

tance (time to death) in P. monodon237 and identified nearby mapping

genes that could potentially influence innate immunity. The estimated

size of the effects of these QTL on resistance was relatively small.

Some of the single nucleotide polymorphisms (SNPs) mapping to

these regions occurred in genes affecting the development and func-

tion of the innate immune system such as those in the ubiquitin-pro-

teosome pathway, affecting lymphocyte cell function, heat shock

proteins, the TOLL pathway, protein kinase signal transduction path-

ways, mRNA binding proteins and lectins. Genome scans of broader

shrimp populations utilising denser sets of SNP markers mapping to

TABLE 1 Examples of -omic technologies with potential applications for exploring the genetic basis of host resistance

-Omic technology Example Application

Relevance in the study of disease

resistance Key references

Genomics GWAS Detection of genomic regions and

allelic variants associated with

phenotypic variation (e.g., disease

resistance)

Fine mapping of loci associated with host

resistance providing candidates for

further testing (and potentially enabling

marker-assisted selection)

[153]

Gene editing Study of gene function Identification and or confirmation of

relevant /causative genes involved in

disease resistance

[154]

Genome-wide

CRISPR knock-out

screens

Assessment of the impact of all the

genes in a genome on a

phenotype

Unbiased identification of genes involved in

disease resistance

[155]

Transcriptomics RNAseq Transcriptomic differences between

tissue samples

Changes in the transcriptome of a tissue

sample in response to infection.

[156,157]

scRNA-seq Transcriptomes measured at single-

cell resolution

Detects changes in cell populations and

gene expression of each cell type in

response to infections

[158,159]

snRNA-seq Similar to scRNAseq but using nuclei

instead of whole cells

As per scRNAseq [160,161]

Spatial

transcriptomics

Transcripts mapped and quantified

to their position in a tissue section

Expression changes at spatial resolution in

the tissue section in response to infection

[162,163]

Perturbation screens Combination of pooled CRISPR

screens and scRNAseq to study

the function of multiple genes

Transcriptomic changes induced by the

absence or up-regulation of a gene of

interest at cellular resolution

[164]

Biomolecule omics Mass spectrometry Identifying proteins, carbohydrates,

glycans, glycoproteins and

metabolites produced by host.

Identify semiochemicals produced by host

and parasite–host protein interactions

[165]

Spatial proteomics Similar to spatial transcriptomics but

for mass spectrometry

identification of proteins

How are protein interactions differing in

areas of the tissue section responding to

infection

[166]

Epigenomics CHIA-PET or HIC Generation of genome-wide

chromatin interaction maps

Identify genomic regions and sequences

showing differential gene regulation

[167,168]

ATACseq and

scATAC-seq

Map chromatin accessibility

(potentially at single-cell

resolution)

Identify differences in chromatin

accessibility are associated with disease

resistance.

[169,170]

CHIPseq Genome-wide identification of the

binding sites of DNA-associated

proteins

Identify differences in DNA binding of

specific transcription factors and other

chromatin-associated proteins associated

with disease resistance

[171]

WGBS Methylation status at each cytosine

base across the genome

Identify differences in DNA methylation

associated with disease resistance

[172,173]

RRBS As for WGBS but assaying only

genomic regions with high CpG

content

As for WGBS [174]

Abbreviations: GWAS, genome-wide association studies; scRNA, Single-cell RNA sequencing; snRNA, Single-nuclei RNA sequencing; CHIA-PET, chromatin

interaction analysis with paired-end-tag-sequencing; ATACseq, assay for transposase-accessible chromatin with high throughput sequencing; CHIPseq,

chromatin immunoprecipitation sequencing; WGBS, whole-genome bisulphite sequencing; RRBS, reduced representation bisulfite sequencing.
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the QTL regions of interest can be used to verify and narrow the

region searched for the occurrence of putative causative genes. Fur-

ther work is needed to study the response of these and other candi-

date genes to WSSV infection in susceptible and resistant shrimp and

to understand whether the same mechanisms might be involved in

other penaeid shrimp such as L. vannamei. GWAS has been used in

this way as a ‘first pass screen’ to help target future research efforts.

4.1.2 | Single-cell RNA sequencing

Sequence count data, derived from the application of RNA-sequenc-

ing (Table 1), has been used to compare the host gene expression

response to infection in highly susceptible and resistant individuals for

many aquatic diseases of concern to aquaculture (Table 3). In contrast

to bulk RNA-seq, single-cell sequencing provides sequences of the

transcriptomes of individual cells. Single-cell sequencing has the reso-

lution to identify cell types and transcript changes of interest during a

disease challenge that would otherwise be indistinguishable with bulk

sequencing502 and since being named method of the year by Nature

in 2013,158 single-cell RNA sequencing (scRNAseq) has provided

novel insights into infectious disease response and host-pathogen

interactions (reviewed in Reference [159]). The most widely used plat-

forms (e.g., 10� Genomics Technology) use microfluidics to capture

TABLE 2 Published application of single nucleotide polymorphism
(SNP) genome-wide association studies (GWAS) and quantitative trait
loci (QTL) scans to explore the genetic basis of host resistance for
species in aquaculture for food production

Atlantic salmon

Infectious salmon anaemia178,179

Pancreas disease180,181

Piscine myocarditis virus182–184

Amoebic gill disease185–187

Sea lice65,188,189

Infectious pancreatic necrosis81,154,190,191

Piscirickettsia salmonis192

Coho salmon

Piscirickettsia salmonis193

Common carp

Aeromonas hydrophila194

Koi herpesvirus195–197

Rohu carp

Aeromonas hydrophila198

Rainbow trout

Aeromonas salmonicida199

Vibrio anguillarum200

Ichthyophthirius multifiliis201

Piscirickettsia salmonis202

Infectious pancreatic necrosis203

Columnaris204

Coldwater bacterial disease205–208

Infectious pancreatic necrosis203,209

Viral haemorrhagic septicaemia virus210

Nile tilapia

Tilapia lake virus211

Red tilapia

Streptococcus agalactiae212

European sea bass

Nervous necrosis virus213,214

Vibriosis215

Asian sea bass

Nervous necrosis virus216,217

Red spotted grouper

Nervous necrosis virus218

Yellowtail (Seriola quinqueradiata)

Benedenia disease219–221

Pacu

Aeromonas hydrophila222

Catfish

Aeromonas hydrophila223

Enteric septicemia224–226

Columnaris disease227

TABLE 2 (Continued)

Yellow croaker

Cryptocaryon irritans228

Pseudomonas plecoglossicida229

Gilthead seabream

Phytobacteriosis230

Sparicotyle chrysophrii231

Japanese flounder

Vibrio anguillarum232

Turbot

Aeromonas salmonicida233

Philasterides dicentrarchi234,235

Red sea bream

Iridoviral disease236

Black tiger shimp

White spot syndrome virus237

Pacific oyster

Vibrio alginolyticus238

Ostreid herpesvirus239

European flat oyster

Bonamia ostreae240

Hard clam

Quahog parasite unknown disease241

Note: Disease names or pathogens are listed below each host species

(host species in bold). Commonly used names are included.
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TABLE 3 Published application of RNA-seq to explore the genetic
basis of host resistance for species in aquaculture for food production

European sea bass

Ceratothoa oestroides244

Nodavirus245–247

Vibrio anguillarum248,249

Japanese sea bass

Vibrio harveyi250

Largemouth bass

Micropterus salmoides rhabdovirus251

Blunt snout bream

Aeromonas hydrophila252

Gilthead sea bream

Sparicotyle chrysophrii253

Red sea bream

Vibrio anguillarum254

Sea bream

Nervous necrosis virus255

Black carp

Aeromonas hydrophila256

Catla carp

Edwardsiella tarda257

Common carp

Aeromonas hydrophila258

Aphanomyces invadans259

Cyprinid herpesvirus 3260,261

Koi herpesvirus262

Spring viraemia of carp virus263

Gibel carp

Cyprinid herpesvirus 2264,265

Liver myxobolosis266,267

Grass carp

Aeromonas hydrophila268,269

Grass carp reovirus270–274

Ichthyophthirius multifiliis275

Vibrio mimicus276

Rohu carp

Aphanomyces invadans277

Aeromonas hydrophila278

Silver carp

Microcystis aeruginosa279

African catfish

Aeromonas veronii280

Channel catfish

Channel catfish virus281

Edwardsiella ictaluri282–288

Flavobacterium columnare284–295

Enteric septicemia296,297

Yersinia ruckeri298

(Continues)

TABLE 3 (Continued)

Ussuri catfish

Aeromonas veronii299

Yellow catfish

Edwardsiella ictaluri300

Cobia

Streptococcus dysgalactiae301

Yellow croaker

Pseudomonas plecoglossicida229,302–305

European eel

Aeromonas hydrophila306

Rana grylio virus and the Herpesvirus anguillae307

Anguillicola crassus308

Japanese eels

Anguillicola crassus308

Olive flounder

Edwardsiella tarda309,310

Megalocytivirus310

Hirame novirhabdovirus311,312

Infectious haematopoietic necrosis virus312

Listonella anguillarum313

Lymphocystis disease virus314

Megalocytivirus315

Viral haemorrhagic septicaemia virus312,316–321

Gibelcarp

cyprinid herpesvirus 2322

Fat greenling

Vibrio harveyi323

Brown-Marbled Grouper

Epinephelus fuscoguttatus324

Giant grouper

Spotted knifejaw iridovirus325

Malabar grouper

Nervous necrosis virus326

Kelp grouper

Nervous necrosis virus327

Orange-spotted grouper

Iridoviruses328

Nervous necrosis virus329,330

Pseudomonas plecoglossicida331–337

Red spotted grouper

Nervous necrosis virus338–340

Tiger grouper

Spatholobus suberectus, Phellodendron amurense, or Eclipta

prostrata341

Yellowtail Kingfish

Gut enteritis342

Lumpfish

Vibrio anguillarum343

(Continues)
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TABLE 3 (Continued)

Mandarin fish

Infectious spleen and kidney necrosis virus344

Fathead Minnow

Yersinia ruckeri345

Rare Minnow

Grass carp reovirus346

Pacu

Aeromonas hydrophila347

Yellow perch

Apophallus brevis348

Black rockfish

Photobacterium damselae349

Atlantic salmon

Infectious salmon anaemia virus178,350–356

Amoebic gill disease185,357–359

Salmon and sea lice65,87,351,360–362

Aeromonas salmonicida363

Infectious haematopoietic necrosis virus364

Infectious pancreatic necrosis virus365,366

Pilchard orthomyxovirus367

Piscirickettsia salmonis192,368–370

Pancreas disease180,371–373

Saprolegnia parasitica374

Sockeye salmon

Piscine reovirus and infectious haematopoietic necrosis virus375

Rhabdovirus376

Asian seabass

Scale drop disease virus and lates calcarifer Herpes virus377

Viral nervous necrosis378,379

Hybrid snakehead

Aeromonas schubertii380

Snakehead

Vesiculovirus381,382

Half-smooth tongue sole

Vibrio anguillarum383

Senegalese sole

Nervous necrosis384

Steelhead

Ceratonova shasta385

Amur Sturgeon

Mycobacterium Marinum386

Yersinia ruckeri387,388

Nile tilapia

Saprolegnia parasitica374,389

Francisella noatunensis390

Meningoencephalitis391

Streptococcus agalactiae392–401

TABLE 3 (Continued)

Streptococcus iniae402

Tilapia lake virus403–405

Brown trout

Proliferative darkening syndrome406

Tetracapsuloides bryosalmonae407

Rainbow trout

infectious haematopoietic necrosis virus408,409

Yersinia ruckeri410

Aeromonas salmonicida and Ceratomyxa shasta409

Flavobacterium psychrophilum411–413

Glochidia414

Ichthyophthirius multifiliis415–417

Infectious pancreatic necrosis virus418

Piscirickettsia salmonis419,420

Proliferative kidney disease421

Vibrio anguillarum422

Ceratonova shasta423

Steelhead trout

Ceratonova shasta423

Turbot

Edwardsiella piscicida424

Enteromyxum scophthalmi425,426

Vibrio anguillarum427

Mitten Crab

Micrococcus luteus, Vibrio alginolyticus and Pichia pastoris428

Mud Crab

Vibrio parahemolyticus429

White spot syndrome virus430,431

Australian red claw crayfish

Aeromonas veronii432

Red swamp crayfish

Infectious hypodermal and haematopoietic necrosis virus433

Aeromonas hydrophila434

Vibrio cholerae435

WSSV and Aeromonas hydrophila436

Far eastern mussel

Vibrio alginnolyficus437

Bannana shrimp

Hepatopancreatic parvo-like virus438

White spot syndrome virus439

Black tiger shrimp

Acute hepatopancreatic necrosis disease440,441

Decapod iridescent virus 1442

Hepatopancreatic necrosis disease443

White spot syndrome virus444

Chinese grass shrimp

Tachaea chinensis445
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individual cells with uniquely barcoded beads, each of which are cov-

ered with unique molecular identifiers that tag each individual RNA

molecule within a cell. This combination of barcodes allows tracing of

each RNA molecule to its cell of origin.160

This technique can also be applied on single nuclei (snRNAseq)

instead of whole cells. The main downside of this being the loss of

cytoplasmic RNA503 which results in lower numbers of genes per cell

sequenced, and possible subsequent loss of well-known marker genes.

However, snRNAseq has the advantage of allowing samples to be flash

frozen for storage, transportation, nuclei extraction and sequencing at a

later date. Unlike whole cells, nuclei dissociation can be performed on

ice, minimising heat stress and the subsequent loss of specific cell

types.160,161,504 Robust nuclei dissociation protocols have been devel-

oped and shown to work well in different tissue types and produce

results concordant with the sequencing of whole cells.505,506

Single-cell/nuclei RNA sequencing can identify changes in cell type,

abundance, and transcripts between samples. By identifying transcrip-

tomic signatures at the cellular level these technologies should provide a

much more precise molecular understanding of disease resistance in

aquaculture species than has been previously possible. For instance, sin-

gle-cell RNA sequencing has been used to characterise the immune sys-

tem of the shrimp Marsupenaeus japonicus, identifying six different types

of haemocytes with differentiated immune roles.507 Only a handful of

other single-cell studies have been carried out in aquaculture species, for

example, on the immunologic profile of Atlantic salmon gill,508 leukocyte

populations in Nile tilapia509 and cold tolerance signatures in the hepato-

pancreas of whiteleg shrimp.510 Single-cell technologies therefore have

great potential for investigating the biological mechanisms underlying the

phenotypic differences in disease response between species.

4.1.3 | Spatial transcriptomics

Spatial transcriptomics is an overarching term for methodologies

assigning mRNA to their relative position in a tissue section

(Table 1,162,163). These technologies are primarily categorised as either

imaging-based approaches (in situ sequencing and in situ hybridiza-

tion-based methods), or next-generation sequencing (NGS)-based

methods. While imaging-based spatial transcriptomic techniques are

typically limited to detecting a handful of genes that have been

selected a priori, NGS methods indiscriminately target RNA within a

spatial area which are mapped back to their spatial position using

unique barcodes.511–515 NGS methods are therefore an attractive

TABLE 3 (Continued)

Chinese mitten crab

White hepatopancreas syndrome446

Fairy Shrimp

Bacterial black disease447

Giant fresh water prawn

Enterobacter cloacae448

Nodavirus449

Vibrio parahaemolyticus450

White spot syndrome virus451

Kuruma shrimp

Vibrio alginolyticus452

White spot syndrome virus453–455

Whiteleg shrimp

Spiroplasma eriocheiris456

Taura syndrome virus457,458

Vibrio parahaemolyticus459–465

White spot syndrome virus466–474

Manila clam

Perkinsus olseni475,476

Vibrio anguillarum477

Vibrio tapetis478

Brown muscle disease479

Surf clams

Vibrio spp.480

Pacific oyster

Vibrio splendidus481,482

Norovirus483

Ostreid herpesvirus135,484,485

Staphylococcus aureus482

Pearl oyster

Vibrio alginolyticus486

Blackfoot paua

Abalone viral ganglioneuritis487

Coloured abalone

Haliotid herpesvirus-1488

Malacoherpesviruses489

Chinese razor clam

Vibrio parahaemolyticus490,491

Spotted hard clam

Vibrio parahaemolyticus492

Cupped oyster

Ostreid herpesvirus 1493

Eastern oyster

Perkinsus marinus494–496

American oysters

Perkinsus marinus497

Roseovarius oyster disease498

(Continues)

TABLE 3 (Continued)

Japanese sea cucumber

Vibrio splendidus499

Sea urchin

Spotting disease500

Vibrio sp.501

Note: Disease names or pathogens are listed below each host species

(host species in bold). Commonly used names are included.

ROBINSON ET AL. 503

 17535131, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12733 by T

est, W
iley O

nline L
ibrary on [25/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



approach for explorative research, allowing for the spatial depiction of

all gene activity in a tissue sample. In terms of ectoparasites such as

sea lice, NGS methods could be used to compare fine-scale localised

gene expression at the site of parasite attachment. Applying the tech-

nique on vertical skin sections through the attachment site of the par-

asite may capture different responses between resistant and

susceptible animals throughout the skin layers. For instance, immune

cell infiltration is a well-characterised feature of coho salmon resis-

tance to sea lice,72,104,516 but we do not know what signals drive this

response in coho, and why this response is weaker in susceptible

salmon species. Spatial transcriptomics could be used to discriminate

what signals are released by host cells at the attachment site at critical

times post-attachment, some of which might be key signals driving

immune cell infiltration. Given that the spatial resolution of NGS

methods is often greater than the diameter of a single cell, integrating

spatial transcriptomic data with snRNAseq/scRNAseq data could facil-

itate powerful insights into transcriptomic differences by cell type

through space.515 Tissue and cell level spatial proteomics is also possi-

ble517 and could be compared with spatial transcriptomic data to

investigate connections between the transcriptome and proteome

with respect to disease resistance.

4.1.4 | Proteomics

The study of infectious diseases requires defining the cellular and molec-

ular mechanisms at the site of pathogen entry or attachment to a host.

The interacting proteins of both species are likely to have a crucial role in

the early infection process. Proteomics can decipher host-pathogen

cross-talk, providing vital information on infection, early pathogenesis,

host-immune response and mechanisms by which pathogens evade host

defence. Use of proteomics in aquatic species disease research is out-

lined in a review by Moreira et al.518 Recent years have seen major

advancements in the technology, although most new developments have

so far been applied to unravelling infectious disease mechanisms and

pathogenesis in non-aquaculture species, such as humans. Here, we high-

light some of the advanced proteomic tools that will likely have applica-

tion for investigating infectious disease biology in fish and shellfish.

Proteomics provides a vast array of tools, not only to measure the

abundance levels of thousands of individual proteins across various

states/conditions from nanogram levels of samples, but also for addres-

sing challenges at proteoform and post-translational modification levels.

Global quantitative profiling employing stable isotopic labelling (e.g.,519)

and extensive fractionation of peptides prior to mass spectrometry (MS)

by various chromatography techniques give deep proteome coverage.

New generation high-resolution MS systems combining additional

gas-phase separation of peptide ions based on ion-mobility and there-

fore label-free quantification approaches by either data-dependant or

data-independent acquisition methods520 can be used to quantify

proteins over a larger dynamic range from complex mixtures. Targeted

MS methods can be used to study a set of proteins of interest in com-

plex mixtures with high sensitivity, selectivity and quantitative repro-

ducibility (e.g., with parallel-reaction monitoring521).

Post-translational modifications (PTM) often play a critical role in

the biology of infection. It has been widely believed that only eukary-

otes were able to make PTMs, however, now high-resolution mass

spectrometry has identified a plethora of PTMs in prokaryotic patho-

gens.522 While host cells can utilise a cascade of PTM changes to accel-

erate immune response, infecting virus also use PTMs to breakthrough

host defence.523 UNIMOD, a database for PTMs detected by mass

spectrometry has now reported over 1500 modifications, indicating the

diversity and richness of post-translational regulation, although the bio-

logical functions of many of these modifications are unknown (https://

www.unimod.org/modifications_list.php, 30 May 2022).

Interactions between host and pathogen proteins are critical for

pathogen replication, and for escape from and control of the host

immune response. High-resolution LC–MS-based proteomics (e.g.,

using co-immunoprecipitation with target-specific antibodies conju-

gated to protein A/G affinity beads followed by MS-based identifica-

tion,524 proximity-dependent biotin identification525,526 with GFP

binding nanobodies,527 cofractionation MS,528 clear-native PAGE529

and/or cross-linking mass spectrometry530) generate detailed quanti-

tative protein profiles that could be used to reveal potential immuno-

modulatory host–parasite interactions.

In P. vannamei, GST-pull down and mass spectrometry analysis

were used to investigate the interaction of the immediate-early WSSV

protein (IE-1) with shrimp proteins, finding 361 host proteins that could

potentially bind to IE.531 Most of these proteins were involved in sig-

nalling pathways such as the prophenoloxidase (proPO), PI3K-AKT,

MAPK, focal adhesion, and cell cycle systems. Knockdown of IE-1

reduced viral load and WSSV gene expression, while recombinant IE-1

inhibited host prophenoloxidase in a dose-dependent manner.531 Meta-

bolomic studies of gill, haemolymph and hepatopancreas have revealed

clearly different profiles in WSSV infected and non-infected shrimp,

consistent with changes in osmoregulation in the gills, upregulation of

the glutathione pathway, increased production of an antimicrobial pep-

tide itaconic acid in the hemolymph and a shift from aerobic to anaero-

bic metabolism as previously described.532 Interestingly, some of the

changes in the haemolymph (increased TCA intermediates and

decreased amino acids) were similar to those in haemolymph of P. van-

namei challenged with Vibrio parahaemolyticus533 while some molecules

were specific for each pathogen such as itaconic acid in WSSV-chal-

lenged shrimp and increased phosphoenolpyruvic acid (PEP) in shrimp

exposed to V. parahaemolyticus, suggesting that there are pathogen-

specific innate immune responses in shrimp. The use of host-targeted

drugs that act on these pathways hijacked by viruses is now emerging

as a potential source of antiviral treatments for human medicine.534

4.2 | Semiochemicals

4.2.1 | Detection and characterisation

In marine ecosystems, obligate ectoparasites, such as sea lice, use

chemical cues and other sensory signals to increase the probability of

encountering a host and to identify appropriate hosts on which they
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depend to complete their life cycle. The chemical compounds that

underlie host identification by the sea lice are not fully described or

characterised. Identification of semiochemicals attracting parasites

opens new possibilities for parasite control. Quantitative assays of

parasite attractants (kairomones) or repellents (allomones) could guide

the selection of favourable variants for breeding programs. The effect

of rearing conditions and feeds on attractiveness can be mechanisti-

cally assessed. Moreover, semiochemicals can be used in push-pull

strategies141 using anti-parasite fouling devices, ointments and baited

traps.535 Traditionally semiochemicals are identified by bioassay-guided

fractionation. Crude extracts are separated into finer fractions based on

chemical properties, for example, polarity, size, or volatility. Active frac-

tions (proven by bioassay) are further separated into new fractions and

the procedure is repeated until an active compound has been isolated.

High-resolution analytical methods are often now used in combination

with statistical methods (metabolomics) to identify and directly bioassay

candidate compounds.535,536 The metabolomic approach can be used

to identify candidate compounds involved in host–parasite interactions,

and to distinguish those produced exclusively, or at markedly higher

levels, by susceptible species or individuals. The effect of candidate

compounds on the behaviour of parasites at infectious stages of devel-

opment can then be assayed. To accentuate differences and improve

the power of detection, samples from host individuals with extremely

high and low levels of resistance to the parasite (based on estimated

breeding values and/or direct counts post-infection) could be tested.

Non-target species that are not parasitized can be used as negative

controls. Candidate compounds may be water soluble metabolites

released from the fish directly into seawater145 or compounds secreted

in the mucous or released as faeces or urine. A full spectrum of semio-

chemicals could be obtained from water bathing the host using solid

phase extraction.145 Sub-nanogram quantities of the semiochemicals in

the collected samples can be measured using a gas chromatography-

flame ionisation detector or -mass spectrometer multiple-point external

method with authentic standards of identified compounds.

Replicate filming tanks or arenas populated with copepodids have

been used for rapid screening of behavioural responses (swimming

speed, hop frequency, and rate of change of direction in response) to

measure lice attraction/repulsion to compounds.537 The responses of

lice to compounds in the behavioural tests are corroborated by neuro-

physiology experiments.139 Copepodids are stimulated to swim rap-

idly upward using a standardised light flash (generating a change of

light intensity simulating a group of fish swimming overhead). Com-

pounds of interest are added to the water at higher than natural con-

centrations to determine if they enhance the response to the

standardised light stimulus. The behavioural data is digitally recorded

and evaluated using motion analysis equipment that has been specifi-

cally developed for measuring such lice behavioural differ-

ences.143,146,537,538 Many different compounds can be processed

relatively quickly using this assay. Different concentrations of the vali-

dated lice-attractant compounds can be used to generate stimulus–

response curves. These stimulus–response curves serve as a basis to

estimate the distance from a point source of salmon at which the

compounds would activate free-swimming copepodids.

Another line of research involves testing if exposure to semio-

chemicals provokes differential gene expression in copepodids (e.g.,

induces the production of immunomodulatory compounds). Salmon

conditioned water and putative semiochemicals could be tested on

batches of infective copepodid larvae. Exposed copepodids could be

sampled at specific time points post-exposure and their transcriptomic

profile analysed using Illumina bulk RNASeq. Profiling of treated and

untreated lice would inform as to whether the levels of louse host-

interacting proteins identified are also influenced by semiochemicals

released by resistant or susceptible salmonid hosts.

To associate semiochemicals affecting host–lice interactions with

candidate genes affecting semiochemical production, a focus could be

on genes coding for enzymes involved in pathways that produce sec-

ondary metabolites. These may be absent/present in susceptible

salmon species, differentially regulated or absent/present in resistant

salmon species and absent/present in other marine species. In com-

mon with all lipophilic compounds, the metabolism of semiochemicals

most likely involves cytochrome P450 (CYP) monooxygenases. The

CYP superfamily is characterised by extremely rapid evolution and

diversification, and frequent acquisition and loss of genes.539,540 Some

CYPs (e.g., the entire CYP2M1 subfamily) are found only in salmonid

fish.541 Tissue profiles combined with gene expression data from

existing transcriptome databases (e.g.542) and qPCR could be used to

identify target genes for blocking the production of parasite

attractants.

4.3 | Gene editing to identify functional disease
resistance genes

4.3.1 | Targeted editing of candidate loci in
embryos and cells

The CRISPR-Cas system85 is a powerful and versatile genome editing

tool that can be used to knock out, knock in or to modify transcriptional

regulation of target genes. Knock out of targets can be achieved by

delivering a Cas enzyme such as Cas9 or Cas12a together with a guide

RNA (gRNA) which guides the Cas enzymes to bind the target region

and make double-strand breaks (DSBs), which are typically repaired via

non-homologous end joining resulting in random insertion or deletion

mutations (indels) around the DSB sites.543 Knock in, or other forms of

precise editing, can be achieved by adding template DNA of the desired

sequence containing homology arms together with the Cas and gRNAs,

such that the DSBs are followed by homology-directed repair (HDR).543

The transcriptional regulation of targets can be achieved by using modi-

fied dead Cas9 (dCas9) with transcriptional activators or suppressors

for upregulation or suppression of the expression of targets.544 Finding

an efficient method for the delivery of editing constructs into cells or

embryos is critical for successful gene editing. There are three general

pathways by which the components for gene editing can be delivered:

(1) physical administration by microinjection, electroporation or hydro-

dynamics, (2) viral vector delivery or, (3) non-viral vector delivery using,

for example, liposomes.545 In addition, editing efficiency varies
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depending on gRNA sequence and is also influenced by features associ-

ated with the target sequence such as chromatin state which affects

accessibility to the target region.546 So far there have been few applica-

tions of gene editing to species in aquaculture (Table 4). CRISPR-Cas9

has been successfully used for both the knock out and in of genes in

Atlantic salmon in vivo by microinjection into the zygote, and develop-

ment of edited animals is becoming relatively routine556–560 as are

knockouts in salmonid cell lines using electroporation of Cas ribonu-

cleoprotein or using lentiviral delivery.561,562 In contrast, attempts to

perform CRISPR-Cas9 genome editing in L. vannamei shrimp zygotes

were unsuccessful using electroporation and chemical transfection.563

Further research on delivery methods of CRISPR-Cas is required to

achieve efficient in vivo genome editing in penaeid shrimp, for example

via microinjection of CRISPR-Cas9, as has been successfully applied to

the decapod (non-penaeid) shrimp Exopalaemon carinicuda.555,563–568

Based on results from large-scale and integrated genomic analyses,

target genes could be chosen for the investigation of their functional

role using genome editing tools. These targets could be candidate

genes or pathways purported to underlie intra- or inter-specific genetic

variation in host resistance to the pathogen, for example, candidate

genes within a QTL region. The targets may also be identified from

knowledge of the biology of the host–pathogen interaction, for exam-

ple, as was the case that led to the knockout of a domain of a cellular

receptor causing complete resistance to the viral disease porcine repro-

ductive and respiratory syndrome in pigs.569 Target loci for host resis-

tance to sea lice might be those (i) upstream of immune pathways

involved in successful lice rejection, (ii) putative targets of louse immu-

nomodulation, or (iii) enzyme(s) required for the production of semio-

chemical(s) that are found to differ (in occurrence or gene expression)

between salmon species with differing louse attachment or activity.

Similarly, targets for WSSV host resistance would include (i) genes

involved in the adhesion and entrance of WSSV into host cells such as

the newly cloned chondroitin proteoglycan 2 of Litopenaeus vannamei

(LvCPG2), which interacts with both VP26 and VP28 of WSSV facilitat-

ing WSSV adhesion and penetration into shrimp hemocytes,570 (ii) the

family of NAD+-dependent protein deacetylases sirtuins, that can reg-

ulate viral replication in vertebrates (in P. vannamei the silencing of

LvSIRT1 was associated with a decreased gene expression in WSSV571)

or, (iii) genes involved in activation of Toll, IMD signalling and JAK/

STAT pathways, (iv) other genes affecting the up-regulation or effec-

tiveness of AMPs, (v) enhancers of NF-kB signalling and, (vi) inhibitors

of the PI3K-Akt- mTOR pathway. Gene knock out using CRISPR-Cas9

targeting early exons, or gene upregulation via dCas9 with a transcrip-

tional activator, could be used as appropriate.

High throughput genome-wide CRISPR screens may also be an

effective route to use for identifying targets (Table 1). CRISPR-Cas

mediated genome-wide gene functional screenings such as genome-

wide CRISPR knockout (GeCKO), CRISPR activation (CRISPRa) or

interference (CRISPRi) screenings could also be used to identify genes

involved in disease resistance.572 To perform such screenings, engi-

neered cell lines expressing appropriate Cas effectors, and a valid way

to deliver gRNA libraries into the cells, are prerequisites. To date, len-

tiviral delivery has been optimised in salmonid cell lines561 but

genome-wide CRISPR screenings have not yet been reported in aqua-

culture species.

4.3.2 | Testing the effects of edits on host
resistance

Genome-edited hosts, along with unedited and mock-edited control

animals of the same families can be challenged with the pathogen of

interest to assess whether the gene(s) subjected to editing affect host

TABLE 4 Application of gene editing for boosting host resistance
for species in aquaculture for food production. Commonly used
names are included

Host species Pathogens Target editing

Atlantic salmon Infectious pancreatic

necrosis virus154
Knockout of NEDD-8

activating enzyme 1

(nae1) and epithelial

cadherin (cdh1)

Asian seabass Nervous necrosis

virus378
Knockout of

ribonucleoside-

diphosphate M1 (rrm1)

Channel catfish Edwardsiella

ictaluri547,548

Flavobacterium

columnare547,548

Transgenesis of cecropin,

knockout of toll/

interleukin 1 receptor

domain-containing

adapter molecule

(ticam1) and rhamnose

binding lectin (rbl)

Bacterial (e.g.,

Acinetobacter

baumannii and

Klebsiella

pneumonia)549

Knock-in of alligator

cathelicidin

Grass carp Grass carp

reovirus550,551
Knockout of junctional

adhesion molecule-A

(gcJAM-A)

Aeromonas

hydrophila552
Transgenesis of human

lactoferrin (hLF)

Rohu Viral, bacterial, lice553 Knockout of toll-like

receptor 22 (trl22)

Rainbow Trout Aeromonas

salmonicida and

infectious

haematopoietic

necrosis virus554

Transgenesis of cecropin

P1 and synthetic

cecropin B analogue

(CF-17)

Aeromonas

salmonicida,

Infectious

Haematopoietic

Necrosis Virus and

Ceratomyxa

shasta409

Transgenesis of cecropin

P1

Ridgetail white

prawn

Vibrio

parahaemolyticus

and Aeromonas

hydrophila555

Knockout of chitinase
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resistance by measuring and comparing host survival and/or pathogen

load, as has been done to explore the effect of the chitinase gene on

ridge back white shrimp host resistance to Aeromonas hydrophila and

Vibrio parahaemolyticus.555 DNA and RNA samples would be collected

to check if the edit is present in the target organ and if it has the

desired effect on gene expression. Tests for mosaicism (using PCR

and sequencing) and checks for obvious effects on the external phe-

notype and behaviour should also be carried out. Detected signs of

developmental abnormalities or high embryonic mortality rates will

also inform whether particular edits should be pursued further. A full

evaluation of whether there are side effects on other important traits

(e.g., off-target effects caused by unintended editing at other sites in

the genome or ill-effects resulting from disruption of the target gene)

would require growing edited animals until harvest size.

5 | TECHNOLOGIES AND APPROACHES
FOR BOOSTING HOST RESISTANCE

5.1 | Genomic selection

Genomic selection,83 which has been described by Goddard and

Hayes573 as a form of marker-assisted selection in which genetic

markers covering the whole genome are used so that all QTL are in

linkage disequilibrium with at least one marker, is now routinely

applied to some aquaculture breeding programmes (Table 5).

For traits measured on sibs or other relatives of the breeding

candidates, that is, not on candidates themselves, genomic selec-

tion is expected to outperform traditional selection methods

because it enables selection within families (resulting in better utili-

sation of genetic variance and a higher intensity of selection) and is

more accurate for estimating breeding values. This is especially

important for aquaculture species with a large number of fullsib

candidates per family588 and increases the rate of genetic gain that

is possible for a given rate of inbreeding. To use genomic selection

instead of traditional pedigree-based breeding value estimation has

been shown to increase accuracy in aquaculture breeding

schemes.589 Genotyping costs for genomic selection can be expen-

sive due to the genotyping of the many individuals in the reference

population (to achieve high accuracy), and large numbers of candi-

dates (to achieve a high selection intensity). Therefore, approaches

to reduce genotyping costs without compromising prediction accu-

racy are needed. Designs that aim to reduce genotyping by pooling

extreme groups of individuals, such as those in which sibling DNA

samples are pooled according to challenge test results, and those

utilising genotype imputation, have been found to be effec-

tive.590,591 Finally, the effects of different marker densities have

been tested and optimised (e.g.,592). Estimation of breeding values

for the selected candidates are based on the SNP effects estimated

in siblings using GBLUP,593 various Bayesian methods or SNP

BLUP.83 Single-step genomic BLUP methods that combine informa-

tion from genotyped and non-genotyped individuals are also

used.594 The integration of QTL information with genomic

selection, and possible implications on the accuracy of predicted

breeding values is a scenario under investigation.185

Choice of genotyping method can also be used to maximise the

cost–benefit ratio. SNP chips are often used. These have some devel-

opment costs, but give high SNP density, repeatability and reliability.

For small populations, where the investment to develop a SNP chip

may be high compared to the economic benefits of genomic selection,

lower-cost genotyping methods using lower numbers of SNPs have

been shown in simulations to give high accuracy of EBV estimation

when combining SNP and pedigree information588 or when using

imputation to higher density SNP panels595 (depending on that some

animals in the population have been genotyped for higher density).

Genotyping-by-sequencing approaches such as RADseq can be used

for species where no reference genome exists and/or if SNPs have

not previously been detected.596 The genotyping needed for genomic

selection may also provide practical benefits since young animals can

be pooled at an early stage and relationships can be inferred later

after genotyping, reducing the need for keeping families separate and

for physical tagging.

Genomic selection has provided a powerful and accurate means

of achieving high rates of genetic gain for WSSV resistance in L. van-

namei shrimp.585 To run a traditional sib-selection for WSSV resis-

tance, families would have to be kept separate and then tagged

before running the challenge test. Keeping families separate would

introduce a common environmental effect of family confounded with

genetics and is practically challenging requiring more facilities, space

TABLE 5 Application of genomic prediction and/or genomic
selection for boosting host resistance for species in aquaculture for
food production

Atlantic salmon Rainbow trout

Amoebic gill disease186,187 Bacterial cold-water disease574,575

Sea lice66,576 Piscirickettsia salmonis577

Coho salmon Infectious pancreatic necrosis578

Piscirickettsia salmonis193 Haematopoietic necrosis virus579

European sea bass Red tilapia

Nervous necrosis virus214,580,581 Streptococcus agalactiae212

Vibrio anguillarum582 Striped catfish

Vibrio harveyi580 Edwardsiella ictaluri583

Gilthead sea bream Tiger pufferfish

Nervous necrosis virus580 Heterobothriosis584

Phytobacteriosis230 Whiteleg shrimp

Pasteurellosis581 White spot syndrome virus585

Sparicotyle chrysophrii231 Pacific oyster

Japanese flounder Ostreid herpesvirus586

Edwardsiellosis587

Note: Disease names or pathogens are listed below each host species

(host species in bold). Commonly used names are included.
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and physical tagging of young shrimp before the WSSV test could be

performed. In this case, genomic selection not only increases accuracy

and genetic gain, but it opens a possibility to select for traits that

would not be feasible to include in a traditional breeding programme.

For the case study of WSSV resistance in L. vannamei,585 one genera-

tion of genomic selection increased WSSV survival by 13 percentage

units.

5.2 | Gene editing

Application of gene editing in aquaculture breeding requires compre-

hensive consideration and discussion from technical, regulatory and

public acceptance standpoints. Therefore, identification of a strong

candidate to edit can be considered as just the first step towards

application. For disease resistance traits, various genomic techniques

can be applied to identify strong candidate genes, and their function

can be investigated in vitro and in vivo using CRISPR-Cas genome

editing systems (as described above). If a particularly promising candi-

date edit is identified, gene editing may then also be applicable as a

tool for the incorporation of favourable edits into aquaculture stocks,

potentially resulting in a large genetic gain.597 Target edits could

include de novo alleles identified in closely related species and need

not be limited to naturally occurring polymorphisms segregating in

commercial populations (e.g., causative mutations for major

QTLs).597,598 For example, genome editing could potentially enable

transfer of the mechanisms of host resistance to sea lice from coho to

Atlantic salmon, via modification of specific genes and pathways in

Atlantic salmon to mimic the resistance mechanisms found in coho.598

The use of gene editing to create de novo alleles could potentially

improve the resistance of populations beyond what could be achieved

in a short time horizon via selective breeding alone.

For species with relatively long generation intervals (such as

Atlantic salmon, 3–4 years), genome editing could be particularly ben-

eficial for speeding up the development of disease resistance. How-

ever, because there are normally many traits of importance to

aquaculture, and because inbreeding and loss of genetic diversity can

reduce the fitness of populations, and both therefore need to be care-

fully limited, the propagation and dissemination of genome-edited fish

will almost certainly need to take place as part of a well-managed

selective breeding programme (rather than replacing such a pro-

gramme). As such, the practicalities of how to incorporate editing

technologies into modern aquaculture breeding programmes require

careful thought and study. For example, mosaicism remains a major

issue with the direct editing of animals via microinjection, and there-

fore obtaining germplasm fixed for a single desirable edit is both chal-

lenging and time consuming. Furthermore, it is conceivable that

genome-edited animals may be required to be sterilised to avoid any

risk of interbreeding with wild conspecifics. Sterility can also be

achieved via genome editing, but it is a particularly challenging trait to

include into a breeding programme for obvious reasons, unless it can

be easily reversed when reproduction is required. The use of germ cell

technologies and surrogate broodstock may offer some potential

solutions, via culture and editing of germ cells in vitro followed by

gamete production from surrogate hosts.599 This approach could also

disentangle the production and dissemination of edited germplasm

from the breeding nucleus germplasm, such that sterility could be

introduced, and edits could be tailored according to the producers'

requirements. Finally, a major challenge after finding targets for edit-

ing is to determine whether the editing of such target genes otherwise

impacts the biology of the animal. As an initial screen for off-target

effects, CRISRP-Cas9 mediated gene functional analysis could be per-

formed first in cell lines.562 In any case, further testing and optimisa-

tion of methods for accurate and efficient implementation of genome

editing for aquaculture will be required before edited fish or shellfish

can be widely disseminated onto farms and before any edited animals

can be accepted and approved for human consumption.

5.3 | Semiochemicals

5.3.1 | Feasibility as a phenotype for selective
breeding

If semiochemical profiles are sufficiently correlated with lice density,

then these profiles may have potential as a convenient phenotype for

assessing lice susceptibility on breeding candidates and their sibs

without challenge testing using lice. Targeted assay(s) for chromato-

graphic analysis of semiochemicals from mucus samples could be

developed for compounds that elicit proven behavioural responses in

lice. Use of such assays might potentially enable avoidance of the

need for costly challenge tests and large field trials. Tandem mass

spectrometry using LC-QQQ-MS provides a suitable instrumental

platform for this type of measurement. Intraclass correlation coeffi-

cients (i.e., the repeatability) of the repeated semiochemical profiles

prior to the lice infection could be used as a measure of the temporal

consistency of the semiochemical profiles released by the fish over

time. The magnitude of the genetic correlation of lice density with the

pre-infection semiochemical profiles, and heritability estimates for

each semiochemical, will determine whether some of these semio-

chemicals may be suitable phenotypic measures for indirect selection

for increased lice resistance, or for use in other lice-combatting

strategies.

5.3.2 | Application of synthesised or extracted
semiochemicals

Cost-effective semiochemical production opens up new methods of

reducing host–parasite encounters. Some existing commercial feeds

are claimed to contain repellent semiochemical additives and Euro-

pean patents exist for some methods and feed compositions for mask-

ing fish semiochemicals (e.g., European Patent Number

EP2517568A1). Research has shown that ectoparasite infections on

fish (amberjack, Nile tilapia and rainbow trout) are reduced when the

fish are grown using diets containing plant derived extracts or beta-
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glucan additives600–603 and proof-of-concept evidence has shown

that botanically-derived materials can be incorporated into feed addi-

tives to reduce the attraction of L. salmonis to salmonid host cues.604

Increased knowledge about genetic differences in semiochemical pro-

duction between resistant and susceptible hosts to sea lice infection

may help in the design of the formulation of feed additives for use to

boost Atlantic salmon's ability to resist sea lice infection.

Several strategies could be used to design feed additives with

potential to boost host resistance to sea lice. For example, ingredients

that block odour receptors in the parasite, mask kairomones released

from the host, and/or increase allomone production in the host could

be tested. As a first pass test, ex vivo fin assays could be used to

assess the anti-attachment properties of a candidate dietary ingredi-

ent.605 Briefly, infectious copepodids are incubated with a candidate

ingredient added to the water at different doses together with excised

pectoral fins of Atlantic salmon. Copepodids readily attach to sub-

merged fins under these conditions while the test ingredient may

reduce the attachment rate if it possesses anti-lice properties. The

copepodids' phenotype (number successfully attached to submerged

ex-vivo fins, free swimming and moribund animals), as well as copepo-

did gene expression, could be used to assess the impact of several

additives in a mid-throughput manner and help in the prioritisation of

candidate ingredients for further lice challenge trials. A more time and

resource-demanding variant of the ex vivo fin assay involves a short

feeding in vivo trial that precedes the ex vivo fin assay. Atlantic

salmon are exposed to the feed that contains the ingredient with sus-

pected anti-attachment properties, or the control feed, for 7–14 days

prior to the ex vivo experiment to allow for the bioactive component

(s) contained in the anti-lice ingredient to accumulate in skin, including

fins, where it acts as a repellent. Pectoral fins from the anti-attach-

ment feed group and control dietary group are removed from fish and

placed in pairs (test and control) in glass containers filled with sea

water and incubated with L. salmonis copepodids. Lower number of

lice settling on fins originating from fish exposed to the test feed sug-

gests that the tested dietary ingredient changes olfactory (or nutri-

tional) properties of skin and mucus thus negatively affecting the early

phases of lice attachment.606 Fin assays allow investigations of early

processes that occur in copepodids around the time of attachment in

a time-series with many multiple time points.

Full trials to test the effect of feed additives are typically around

3-month long, as they involve host acclimation, pre-feeding of test

diets (depending on the rate of accumulation of bioactives in skin and

mucus, this period may need to last for up to a month) and an infec-

tion challenge with L. salmonis copepodids. Different dietary doses in

triplicate tanks would need to be tested against the control dietary

group. Growth rate and other important traits would be monitored

throughout the trial to allow for the detection and assessment of any

possible negative effects caused by the tested ingredient. All treated

fish would be challenged with lice and resulting infestation densities

recorded and compared to control groups to allow for the utility of

feed additives for repelling lice and masking salmon to be assessed.

An alternative to boosting host resistance through anti-attach-

ment feeds is to deploy semiochemicals beyond the host to reduce

the number of lice entering sea cages. This might be achieved using

baiting traps around the perimeter of the farm, slow-releasing decoy

semiochemicals at a distance from the farm, or slow-releasing repel-

lent/masking semiochemicals within the farm footprint to discourage

lice. Behavioural responses to host/non-host cues are well-documen-

ted in the laboratory,136,140 yet the best evidence for efficacy in the

sea was produced by a trial of cages with semiochemical-impregnated

mesh (607 reviewed in Reference [46]). Applications of semiochemicals

outside of the host may not work at commercial scale, simply because

the swimming capacity of louse larvae, which is sufficient to intercept

a host over very small distances (millimetres to centimetres, as dis-

cussed in Reference [141]), may not be sufficient for most larvae to

reach discrete trapping points or avoid an object the size of a com-

mercial sea cage. Impregnation of cages with semiochemicals that

either disrupt host-finding once larvae enter the cage (e.g., by blocking

semiochemical receptors while lice are within the semiochemical

plume) or attract lice to the mesh itself (including a method of trap-

ping or killing larvae that are attracted to the mesh), are approaches

that could be tested.

5.4 | Vaccines

Fish vaccination, which has been in use for over 40 years, has signifi-

cantly contributed to the sustainability of the industry, and dramatically

reduced the use of antibiotics.10 Most licensed vaccines currently used

in aquaculture are produced using conventional methods and consist of

inactivated or live-attenuated whole organisms, predominantly whole

cell bacterins. In aquaculture, commercially available vaccines using

modern technologies, targeting specific pathogen components, only

include recombinant or subunit protein vaccines.10 Examples include an

E. coli-based expression subunit vaccine against infectious pancreatic

necrosis (IPN) in Norway (produced by Merck Animal Health) and a

yeast-based subunit vaccine against infectious salmon anaemia (ISA)

virus available in Chile (manufactured by Virbac-Centrovet).

Even though traditional vaccine technologies have enhanced live-

stock productivity, the efficacy of inactivated vaccines can be subopti-

mal and live-attenuated ones may present safety concerns. To

circumvent some of these flaws, veterinary medicine has been at the

forefront of novel vaccine technology, pioneering the development

and licensing of third-generation vaccines including DNA, RNA and

recombinant viral-vector vaccines.608

The latest vaccine technology to be applied to aquaculture uses

self-replicating RNA vaccines based on an alphavirus genome (i.e., sal-

monid alphavirus 3).609 Alphaviruses contain RNA replication machin-

ery which is left intact in the vaccine, and genes encoding for

structural proteins that are replaced with the antigen of interest. Such

antigen-encoding RNA replicon platforms enable the production of a

large amount of antigen from a small dose of vaccine. RNA vaccines

have been found to give high protection against infectious salmon

anaemia depending on the route of administration.610,611

It is challenging to develop vaccines against parasites. In the case

of ectoparasites, such as sea lice, there are even greater challenges
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because of the antigenic complexity of metazoan organisms and phys-

ical separation between the pathogen and the host, allowing the path-

ogen to conceal a large proportion of its potential antigens. Despite

these difficulties, and despite the few published research initiatives in

this area (Table 6), researchers have recently demonstrated the pro-

tective effect of using a salmon lice-gut recombinant protein (P33) as

a vaccine antigen against sea lice (L. salmonis) in a laboratory-based

trial.613 The identification of suitable antigens against sea lice fol-

lowed a translational approach successfully implemented in the devel-

opment of vaccines against ticks614,620 by proteomic identification of

louse feeding-associated proteins. Under field conditions, a tick vac-

cine (Gavac; Heber Biotec), which is the only commercially available

vaccine against an external parasite, uses a single tick gut antigen

(Bm86) to induce protection against ticks (Rhipicephalus microplus) in

cattle. The successful development of this tick vaccine, and the prom-

ising results observed in salmon immunised with the P33 vaccine have

been achieved thanks to recent advances in ‘vaccinomics’, based on

transcriptomic and proteomic data620 which allow a deeper under-

standing of the genetic factors and molecular pathways involved in

the host–parasite interface. However, vaccines against lice may not

be 100% effective, in which case they will not eliminate the lice prob-

lem but may reduce the number of lice per fish and/or the number of

eggs produced per lice. This is the case with the tick vaccine for which

55%–100% efficacy in control was achieved 12–36 weeks after the

first vaccination and 60% reduction in the number of acaricide treat-

ments was achieved relative to that for non-vaccinated cattle.621 If

salmon lice vaccinations are not completely effective, animals may

have to be revaccinated in the grow-out phase, which is a demanding

and costly procedure as the fish grow larger, and other supplementary

measures (such as biological control, medicines and selective breed-

ing) will still be needed.

Transcriptomic profiling of differential responses to resistant and

susceptible salmonid hosts has facilitated progress in understanding

the importance of nutritional immunity in response to Caligus roger-

cresseyi infection and subsequent application of vaccination modulat-

ing iron-chelating activity.108,619 Injection of shrimp, L. vannamei, with

recombinant ferritin has also demonstrated protective efficacy against

WSSV by inhibiting viral replication.622 Another recombinant

approach which is more feasible to apply at large scale includes dou-

ble-stranded RNA targeting VP28 (dsVP28) produced by the probiotic

bacteria Lactococcus lactis. Administration of L. lactis expressing

dsVP28 to the animals before the WSSV challenge, significantly

increased survival and decreased viral load compared to non-treated

animals.623 Differential infection-associated L. salmonis transciptomic

profiles between Atlantic and Pacific salmonid hosts has also revealed

potential virulence genes,113 which may be exploited for vaccination.

Sequencing of homologous or conserved genes based on proteins

and vaccine targets of ticks and other arthropods has proven an effec-

tive approach in antigen mining for sea lice.615–617 RNAi enables func-

tional characterisation of vaccine candidates624 and has been applied to

characterise a number of potential sea lice vaccine candidates including

biomolecules involved in egg production (e.g., yolk-associated protein;

LsYAP,625), digestion (e.g., KEDL receptor; LsKDELR and vesicular

coatomer protein complex; LsCOPB2,626), muscle activity (e.g.,

LsalMS,627) and immunomodulation (e.g., prostaglandin E-synthase 2;

PGES2,628) leading to impaired parasite reproductive capacity, digestion

and development. Gut digestion-associated serine proteases, for exam-

ple, trypsins have been characterised based on sequence homology

with other crustacea,629 secretory products such as metallopeptidases

and collagenases have been identified by proteomics using LC-ESI-MS/

MS,110 and exocrine glands associated with attachment and host–para-

site interactions have been mapped and characterised microscopi-

cally.107 Higher resolution sn-RNA-Seq and spatial- ‘omics’
technologies (Figure 1) will further elucidate the role glands and their

secreted products play during louse infection, and these technologies

are expected to result in the identification of new vaccine candidates.

6 | OPTIMISING IMPLEMENTATION AND
DISSEMINATION TO ACHIEVE POPULATION-
WIDE HOST RESISTANCE

The high cost of pathogen infection to the aquaculture industry is

largely associated with the technology and labour involved with pre-

vention, treatment and associated stresses, reduced growth and

increased mortality thereafter (e.g., the high cost associated with

delousing Atlantic salmon,27,36,630). For strategies boosting host resis-

tance to be effective preventative measures, we need to ensure that

they eliminate or severely reduce the need for treatments such as

delousing across the industry and are everlasting or sustainable.

While we can focus on the genetic basis of host resistance, it is

important to have one eye on the broader population dynamics at

play. There is little value, for example, in producing a host salmon or

shrimp with twice the resistance if this does not translate into a dra-

matic reduction in actual infestation rates throughout the entire pro-

duction cycle. Such nonlinear returns are entirely possible as

implementation scales up from an individual to population level, espe-

cially for instance if the modification introduced can be repaired (as

has been a problem when CRISPR gene drives are introduced into

wild populations, for example,631) or has little effect on the overall

epidemiology of the disease. Alternatively, minor changes to resis-

tance might have major consequences for infestation rates and may

impose selection pressure on the parasite. Modelling of host–parasite

dynamics, then, will provide an important tool for understanding how

genetic manipulations might have maximum effect over a prolonged

period. We focus here mainly on salmon louse as a case study. The

ideas we discuss are, of course, relevant to the shrimp example also,

but the shrimp example is more complex and critical factors (such as

spatial connectivity) are not yet well resolved for WSSV.

6.1 | Understanding the epidemiological effects of
genomic solutions

The full scope of genomic solutions to control infectious diseases in

aquaculture is likely to be grossly under-realised because current
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selection does not consider host–parasite interactions and resulting

epidemiological effects.632 This is particularly pertinent in aquaculture

programmes, in which disease resistance is defined as the ability to

survive when exposed to infectious pathogens, as is the case for most

virus infections, including WSSV in whiteleg shrimp.585 Survivors may

have higher tolerance to cope with infections and thus transmit infec-

tions to others.79 Few studies consider how endurance is affected by

selection for disease resistance.234 Hence, it is generally not known

whether and to what extent selecting directly on survival as the resis-

tance phenotype reduces disease transmission and thus the incidence

and severity of disease outbreaks in populations.633 Epidemiological

models for micro-parasitic infections, such as virus infections, point to

three underlying epidemiological host traits that affect pathogen

transmission and subsequent mortality rates: susceptibility (the pro-

pensity of an uninfected individual to become infected when exposed

to infectious material), infectivity (the ability of an individual, once

infected, to transmit the infection) and mortality (the propensity of an

infected individual to die, i.e., the opposite of tolerance). Evidence

from recent transmission experiments in aquaculture populations sug-

gests that substantial host genetic variation and co-variation may exist

for all three host traits, and that all three epidemiological traits can be

reliably estimated.79,634 Furthermore, genetic-epidemiological models

indicate that genomic selection for reduced host susceptibility and

infectivity may more effectively reduce disease prevalence than cur-

rent selection for disease resistance.635

Genetic selection for host resistance to external-parasites like sea

lice is expected to directly reduce parasite load in the populations, as

observed in practice for sea lice infections in salmon.46 This is because

parasite count is used as the resistance phenotype. For example, resis-

tant fish with lower sea lice counts are expected to also propagate

fewer lice and hence reduce the overall lice prevalence in the popula-

tion.60 Nevertheless, the full potential of genomics is also likely to be

under-realised for these types of infections. There are many host

resistance mechanisms that interfere with the parasite life cycle that

TABLE 6 Published sea lice vaccines and antigen discovery platforms

Vaccine antigens

Antigen localisation/

putative function

Antigen discovery

technology

Administration

method Efficacy References

Crude extract: Whole adult

antigens

Gut antigen cocktail Antigens

characterised ConA

enrichment and 1D

SDS-PAGE/

immunoblotting

Injection

(intraperitoneal)

Lepeophtheirus salmonis 26%

reduction in gravid female

egg numbers.

[612]

Escherichia coli expressed

recombinant protein:

p33—potassium cholride

amino acid transporter

Gut: Cellular

hypotonic salinity

response and

transmembrane

transportation

RP-LC–MS/MS

proteomic

identification of

gut-associated

proteins

Injection

(intraperitoneal)

with IP boost

L. salmonis 41.3% reduction

in chalimus.

35.7% reduction in adult lice.

[613,614]

E. coli expressed

recombinant protein:

p30—putative toll-like

receptor 6

Gut: Innate and

adaptive immune

response

RP-LC–MS/MS

proteomic

identification of

gut-associated

proteins

Injection

(intraperitoneal)

with IP boost

L. salmonis 31% reduction in

chalimus.

16% reduction in egg string

length.

[614]

E. coli expressed

recombinant protein: p0

ribosomal protein

Immunogenic midgut

protein involved in

assembly of 60S

ribosomal subunit

and protein

synthesis

Sequencing data—low

amino acid

sequence similarity

between louse and

host (preventing

tolerance or

autoimmunity)

Injection

(intraperitoneal)

and immersion

L. salmonis 21% reduction of

adult females, 42.5%

reduction in gravid adult

females. Delayed hatching

of gravid female eggs, low

copepodid counts in F1

generation.

[615,616]

E. coli expressed

recombinant protein:

my32-ls/akarin-like

Transcription factors

required for NF-k-

dependent gene

expression

Sequencing of

conserved genes

using degenerate

primers and cloning

Injection

(intraperitoneal)

C. rogercresseyi 57%

reduction in adults.

[617,618]

E. coli expressed

recombinant protein:

IPATH® Iron binding

domain of s. salar

transferrin and S. salar

ferritin subunit H

Iron-chelating – host

blood iron

regulatory proteins

Whole transcriptomic

analysis/RNAseq

using MiSeq

Illumina(R)

sequencing

Injection

(intraperitoneal)

C. rogercresseyi 78%

reduction of adults vs.

10% in controls. Disrupted

embryogenesis, genital

segment inflammation.

Significant reduction in adult

lice burden (mean 17

control vs. 407 in

vaccinates)

[619]
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are likely under host genetic control and could therefore be targeted

for genetic improvement. These include, for example, those that lead

to (a) an increasing proportion of non-gravid and thus non-reproduc-

tive females due to a reduction in the average lice density per fish636;

(b) reduced fertility of the gravid female lice; (c) lower hatchability of

the eggs; (d) lower survival from hatching to the infective copepodid

stage; (e) lower infective success rate of the copepodids; (f) lower sur-

vival success of copepods through behavioural divergence or lower

quality energetic resources. Factors (b)–(f) may be caused by lice

maturing on fish with increased resistance to lice thus leading to an

inferior rearing environment due to, for example, different chemical

factors in the mucus and skin of the salmon host. This is expected to

result in a higher genetic gain in resistance to the lice than predicted

from classical quantitative genetic theory. Research is needed to

assess the host genetic effects underlying such mechanisms. In the

first instance for the lice example, it would be useful to assess the dif-

ferences in the number of male lice and the number of gravid and

non-gravid female lice, number of eggs per female lice, and infectivity

of lice growing on fish with very high and low estimated breeding

values for lice density.

A better understanding of the influence of host resistance on par-

asite epidemiology will allow the development of more efficient strat-

egies to reduce lice infestation, including evaluation of the economic

importance of performing genetic improvement for increased resis-

tance of the host to the parasite and formulation of functional feeds.

In particular, such data would inform epidemiological models of para-

site prevalence in host populations that differ genetically in terms of

their impact on the parasite life-cycle.60 Such models are needed for

optimising selective breeding strategies and furthering our under-

standing of the effect of selection for increased parasite resistance on

possible correlated epidemiological effects through reduced parasite

reproduction.

6.2 | Mitigating possible counter-evolution by the
parasite or pathogen

It is well known that parasites and pathogens can rapidly adapt to pest

controls used on farms.637–640 Without proper precautions in place,

pest evolution can lead to a dramatic decline in the efficacy of a novel

control technology. The Atlantic population of L. salmonis has already

evolved pesticide resistance to most of the chemical treatments used

on salmon farms,48,641 and there are concerns that they could similarly

adapt to the various non-chemical alternatives that are in use.47 Due

to the strong louse gene flow between farms, advantageous traits can

spread through the parasite population in a very short space of

time.641–643 When developing new, parasite-resistant strains of host,

it is therefore imperative that the risk of counter-adaptations evolving

in the parasite is full assessed.

Just as individual Atlantic salmon vary in their ability to resist

lice,62,188 so too may there be genetic variation within L. salmonis in

their ability to tolerate, evade or modulate the hosts' immune

defences. Lice with improved infestation success and survival on

resistant salmon strains would therefore be selected for. The possibil-

ity for interaction effects between salmon and louse genotypes on

infestation success is yet to be studied.

In terrestrial agriculture, pathogens have evolved to overcome

resistant genes in plants on many occasions.644–647 Increased use of

transgenic crops that have been modified to produce insecticidal pro-

teins has driven a surge of counter-adaptations in insect pests.640

However, selective breeding for resistance in animals has proven to

be much more durable against counter-adaptations, providing long-

standing protection against parasites.648,649 Nevertheless, host–para-

site co-evolutionary arms races occur in many animal systems,650–653

and so the potential for lice to adapt to changes in host resistance

must be considered. Theoretical studies on parasite adaptation in

hosts with different genetic resistance to the parasite suggest that it

is unlikely that the parasite would change significantly as a result of

selective breeding for increased parasite resistance.654 This is

explained by the fact that adaptation of the pathogen requires allele(s)

that are favourable in hosts with improved resistance, that long-term

selective breeding for increased disease resistance is a dynamic and

broad spectra strategy involving very many genes and that the resil-

ience in the host is rarely complete, varies between fish, and the

genetic progress is relatively small per generation of breeding. This is

why strategies involving selective breeding for host resistance to lice

are probably less risky than, for example, drugs or vaccines that affect

one or a few specific mechanisms of interaction between the host and

the pathogen.648

Lepeophtheirus salmonis populations in the Atlantic and Pacific

Oceans belong to two allopatric subspecies that likely diverged �5

million years ago.655,656 Given that parasite evolution is profoundly

shaped by the host environment, one would expect the Atlantic and

Pacific louse subspecies to have locally adapted to their sympatric

Salmo and Oncorhynchus hosts, respectively, to some degree over

these �5 million years. This topic has received limited research but

will be relevant if resistance mechanisms in Pacific salmon species are

used as the template for gene-edited Atlantic salmon. That Pacific

species such as coho salmon have retained their relatively high resis-

tance, despite millions of years of co-evolution with lice, suggests that

lice will be unlikely to overcome coho genes used as the basis for gene

edits to produce resistant Atlantic salmon.648 Nevertheless, the full

efficacy of this strategy could erode over time through local adapta-

tions in the louse population. In the wild, coho salmon can still support

relatively high louse infestations.657–659

Pacific salmon lice show an enhanced transcriptomic feeding

response on Atlantic salmon compared with on Pacific hosts.113 Louse

responses on sympatric coho and sockeye salmon were similar,

despite these host species differing in resistance.113 Fast et al.100

measured the production of enzymes secreted by Pacific and Atlantic

lice, thought to assist in digestion and/or host immunomodulation, in

response to the mucus of different host species. Both louse subspe-

cies had higher enzyme production when exposed to the mucus of

Atlantic salmon, than when exposed to more resistant coho salmon

(O. kisutch). Interestingly, mucus tended to stimulate a stronger feed-

ing response in sympatric, rather than allopatric, louse subspecies.100
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That is, Atlantic salmon mucus and coho mucus stimulated relatively

higher enzyme secretion in Atlantic and Pacific lice, respectively.

These differences in the feeding activity of lice on sympatric and allo-

patric host species100,113 highlight the heightened susceptibility of

Atlantic salmon to lice and are also suggestive of some degree of local

adaptation.

Research into infestations on non-salmonid hosts, such as the

three-spined stickleback (Gasterosteus aculeatus), may also provide

insights into the extent to which lice can adapt to alternative host

strains. Lepeophtheirus salmonis will readily infest sticklebacks in the

laboratory and the wild, but do not appear to be able to successfully

sexually mature on them.660,661

Given the effort required to research and develop new mecha-

nisms of host resistance, it is desirable for a strategy to maintain a

high level of efficacy for as long as possible. A key plank of any plan

for implementing genetic technologies for host resistance should be

to minimise the risk of counter-adaptation by the parasite. An evolu-

tionarily stable strategy consistent with animal welfare and production

demands is therefore needed. One approach for achieving this is to

maintain genetic diversity in host resistance, both within and between

host strains. The more genes for resistance that are incorporated into

a host strain, the more complex the mechanism of resistance, and the

harder it is for parasites to evolve counter-adaptations.662–664 Of

course, the trade-off of this is the extra effort required to develop

additional gene edits and focus selective breeding on disease resis-

tance while maintaining high levels of genetic diversity in the captive-

bred populations.

Another approach for slowing the spread of parasite counter-

adaptation might be to establish refugia—in the salmon example,

maintaining populations of susceptible salmon strains.640,665,666 Refu-

gia are particularly effective at preventing parasite adaptation if coun-

ter-adaptions incur fitness costs on susceptible host strains.666,667

Wild populations can act as refugia, provided they are large

enough.665,668 In the Atlantic, however, farmed salmon are signifi-

cantly more abundant than wild hosts.34 It might be more effective,

then, if some farms were to act as refugia instead, by being stocked

with susceptible host strains, but it seems unlikely that such deliberate

degradation of fish welfare on a whole-farm basis would be accept-

able to the authorities and public.

Choosing which farms must forego resistant hosts to avoid coun-

ter-adaptations would pose a difficult decision, as would decide how

many different gene edits are needed to provide an evolutionarily

durable strategy. This is where evolutionarily dynamic metapopulation

models can be powerful tools (e.g.,669). Such models have previously

been used to predict the rapid spread of pesticide resistance, and to

identify evolutionary hotspots in areas of intensive farming.669 To

simulate counter-adaption to resistant hosts, these models could

include the stocking of different host strains, selection imposed by

these strains on louse genotypes, and recombination and mutation of

louse genes. Model simulations can then be run for different scenarios

to determine the optimal management regime: one that prevents lice

from adapting to resistant hosts, while still significantly reducing lice

infestations in the short term.

These models are valuable for identifying the most evolutionarily

durable avenues for achieving host resistance. Once resistant strains

have been developed, models can again be used, this time to inform

how resistant salmon should be introduced to farms through space

and time. Simulations can also be used to consider how resistant

salmon should be deployed in concert with other preventative strate-

gies,46 to further mitigate the risk of louse evolution.670 Of course,

the accuracy of such models is directly proportional to our under-

standing of counter-adaptations in lice. The more that is known about

the mechanisms, genetic architecture and fitness costs behind any

counter-adaptations, the greater the predictive power of the model.

6.3 | Integration of genomic technologies and
dissemination to the sector with the implementation
of gene editing and genomic selection

Genome editing in combination with other biotechnological advance-

ments such as germ cell technologies could be used to help accelerate

genetic improvement.599,671 Gene editing can rapidly introduce

favourable changes to the genome, either by fixing alleles at existing

trait loci, creating de novo alleles or introducing alleles from other

strains or species. However, seamless integration of genome editing

technologies into a well-managed breeding programme is required to

ensure continuous genetic improvement and careful management of

genetic diversity. It is also important to consider that gene editing is

likely to alter the genetic architecture of other traits of interest, per-

haps leading to substantial epistasis, and this would have to be

accounted for in future breeding strategies.

The expected genetic improvement of traits of interest through

selective breeding depends on several factors including heritability,

selection intensity, selection accuracy and generation interval. The

implementation of genome editing in aquaculture breeding will have

the same goals as traditional selective breeding practices. In the cases

here, the ultimate goals for genetic improvement should be to elimi-

nate or reduce the number of delousing events required by the

salmon industry and to boost the survival of shrimp in the face of

WSSV disease. The number of lice that have infected the fish in chal-

lenge and/or field tests are the index traits that are being used for the

salmon lice case whereas survival after a challenge test is the index

trait currently used to select for WSSV resistance. However, host

resistance is a complex phenotype consisting of multiple layers

(attraction, prevention of attachment or infection, immune response,

infectiousness, etc.). More detailed knowledge about host influences

on disease reproductive success, host immunology and host semio-

chemicals influencing lice attraction and attachment could provide

more specific phenotypes for host selection and enable more accurate

forms of genomic selection for host resistance. Such knowledge will

also provide targets for gene editing.

The effect of gene editing on disease resistance could be on a

similar scale to that of a major gene affecting a trait, or in the case of

a de novo edit, could be on a much larger scale (effecting disease

resistance to an extent not seen within the breeding population). If
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the gene edits were directed at genetic variants causing QTL effects

(in a way that creates similar variants to those that naturally exist in

the population), the editing could have a potentially large impact on

traits where one or a few major genes affect the trait considerably. In

this case, the gene editing might bring us a large step forward by fixing

a preferred allele for a gene underlying a QTL. For traits with a more

polygenic structure, traditional selection and genomic selection would

be preferred to this type of gene editing in most instances. In any

case, the application of selection methods will improve the trait fur-

ther, by selectively improving the genotypes at other loci related to

the same trait.

However, as noted above, editing may alter the genetic architec-

ture of the trait and lead to substantial epistasis. In plants, gene edit-

ing has been suggested as a final step after selection for complex

traits, to improve monogenic quality traits.672 In aquaculture, gene

editing needs to be done before selection for other traits has

occurred. The edited fish might not therefore be chosen as a parent if

they have poor performance for other traits of interest. Alternatively,

surrogate broodstock technologies599 could help to reduce the long

generation interval in Atlantic salmon and be used as a dissemination

tool because the editing could be implemented after selection and

before dissemination to producers without altering the breeding pro-

gramme germplasm. The costs associated with these strategies

(increased direct costs and/or reduced gain for other traits) may be

acceptable if the gene editing is successful, important and does not

need to be repeated every generation. However, if editing needs to

be performed repeatedly, to cover many genes or traits, a more inte-

grated approach is needed where for instance a few edited and

selected individuals are used to introgress the edited variant into the

population.

Editing efficiency also determines the feasibility of gene editing in

aquaculture breeding. Studies on the optimal number of edited ani-

mals required in aquaculture breeding schemes are lacking, but simu-

lation results from livestock schemes demonstrated that genome

editing technologies in combination with genomic selection have the

potential to increase genetic gain many-fold for traits of interest com-

pared with genomic selection alone.673–675 As of today, no cost–ben-

efit analysis has been done for gene-edited assisted selection (GEAS)

programmes in aquaculture. Such an analysis would consider the num-

ber of gene-edited individuals, single or multiple gene edit effects,

other traits under selection, expected genetic gain and rate of

inbreeding. Also, the rate of dissemination and the economic implica-

tions of these schemes should be assessed and compared with con-

ventional breeding designs. Specific GEAS schemes with special

attention to multiplier parents, which produce seed for the production

tier, could then be designed. The multiplier parents carrying resistance

edited genes to be selected, and the effect of this selection strategy

on the resistance of the production population, should be investi-

gated. A recent modelling study revealed that gene editing, when

effectively combined with other disease control strategies, such as

vaccination, may be able to eliminate persistent livestock diseases that

are currently difficult to control.676 However, according to this study,

such desirable outcomes can only be achieved if the distribution of

genetically resistant individuals into commercial populations is coordi-

nated by breeding companies or national schemes.

7 | ETHICAL CONSIDERATIONS

Improving disease resistance improves the economics of aquaculture,

and it also contributes to more sustainable aquaculture production by

improving animal welfare and reducing the impact of aquaculture on

wild stocks.677 Traditionally, selection for genetic improvement is

based on survival information from challenge-tested siblings of the

breeding candidates, which involves exposing large numbers of indi-

viduals to pathogens, and therefore results in some suffering. Survival

phenotypes are recorded from numerous relatives to enable accurate

estimation of breeding values. This sacrifice can be argued to be ethi-

cally acceptable as it is done for avoiding suffering of a much greater

number of individuals in large-scale disease outbreaks. Even so, the

intrinsic value and welfare of fish, independent of their utility to

humans, should be part of our ethical considerations.677 Adoption of

advanced breeding strategies (e.g., genomic selection) and/or adop-

tion of new biotechnological methods (e.g., gene editing) will reduce

the use of experimental animals. However, other ethical dilemmas

arise when technologies such as gene editing are proposed to be

adopted and implemented in practical breeding programmes.

Knowledge particular to each case is needed so that we can

understand and evaluate potential off-target and/or pleiotropic

effects of gene editing on welfare. Another important consideration

will be how the edits should be most effectively and responsibly cre-

ated and spread throughout the breeding and multiplier populations.

To ensure sustainable implementation of gene editing in aquaculture

it is important to ensure that there is no possibility for edited fish to

detrimentally affect wild population gene pools. The effect of

escapees from a gene-edited population into the wild is not only

dependent on the number of escaped fish, but also their phenotypic

characteristics related to fitness and the existing diversity in the

receiving ecosystem.678 Genetic introgression from aquaculture to the

wild populations could be avoided by making the gene-edited fish

sterile (either through editing of a locus affecting fertility or other

means). In summary, the application of gene editing to aquaculture

needs to be safe for the fish, the consumer and the environment679

and every proposed edit needs to be researched and evaluated with

risk analyses on a case-by-case basis.

Research institutes producing gene-edited fish and shellfish need

to ensure future sustainable and beneficial impacts from the use of

gene editing by developing strict guidelines for a Responsible Research

and Innovation (RRI) framework. RRI frameworks commit to (1)

describe, analyse and openly discuss the consequences of the process

and outcomes of the research activities (anticipation), (2) holistically

reflect on the moral, political and social assumptions and the main

motivation and drivers of the research in question (reflexivity), (3)

invite all relevant stakeholders to contribute views and opinions about

the research trajectory (inclusion) and (4) be willing to change the tra-

jectory of research if feedback from the stakeholders reflects that
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research is not likely to meet the requirement and expectations of the

society (responsiveness).680 Rigorous quality systems need to be set

in place to ensure that such guidelines are followed and that the fish

and shellfish produced are securely contained.

Due to the complexity of the biotechnology, fish biology and of

each specific situation, a case-by-case comprehensive and systematic

approach is needed to address the ethical acceptability of each tech-

nological advance.681,682 Ethical matrix (EM) approaches rely on gen-

erally accepted ethical principles and are used to get an overview of

the most important ethical interests or values connected to the partic-

ular issue.681 The formulation of the overview involves and considers

all groups who have an interest in or are affected by the technology

including industry, NGO and government, and considers effects on

the individual animals that are directly targeted, as well as the overall

effect on nature. Emphasising the principles of well-being, justice and

fairness, the EM was designed to create discussion over ethical priori-

tisation for those with little or no training in ethical theory. EM can be

used as a tool both to guide the research process within a project

group and to create a dialogue between scientists and stakeholders.

EM approaches can be used repeatedly and involve different stake-

holder groups to promote the inclusiveness and responsiveness of the

research project.

Any dissemination plan produced should follow and expand on

institutional RRI guidelines that have developed for the use of gene

editing (e.g.,680). Following the RRI dimension on inclusion, data

should be shared and workshops held involving diverse scientific and

industry representatives so that insight is gained, tapping into broad

interdisciplinary knowledge and practical farming experiences. Fur-

thermore, industry partners should be consulted at every step and be

represented on the steering committee for such projects. Methodo-

logical ethical considerations include, for example, performing a priori

power calculations to guarantee adequate but not unnecessarily large

experimental setups, execution of challenge tests in bio-secure envi-

ronments to prevent pathogenic, parasitic, or edited material from

escaping en masse into the surrounding environment, close monitor-

ing of experimental animals and euthanasia of suffering individuals. In

addition to using breeding strategies and technological methods that

minimise challenge tests, more focus should be put towards assess-

ment of alternative less invasive phenotypes (as an alternative to

exposing fish to pathogens in challenge test).

With the work that is underway around the world applying

genetic technologies to combat infectious diseases in aquaculture,

aquaculture sectors will soon face important decisions. Likely there

will be a much greater understanding of natural processes affecting

host resistance to parasites and pathogens and strategies will be

developed that could transform these industries as we know them.

The projects now underway will advise on the most responsible and

effective approach, or combination of approaches, for reducing or

eliminating these parasite and disease problems. There will be a need

for further testing of gene editing to ensure there are no risks. The

aquaculture sectors involved need to have an open dialogue around

the use of these technologies. ‘Business as usual’, with no change, is

not a viable option, considering the effects of these diseases on

profitability, animal welfare and public perceptions. The goal of such

research will be to develop safe and effective strategies. But it is the

aquaculture industry sectors involved that will need to work with rele-

vant public and government agencies to decide if these strategies

should be implemented, and to clear the path, so that they can solve

this problem and transform their businesses.

8 | CONCLUSIONS

Substantial research programmes are underway that aim to produce

new knowledge that could be applied for boosting host resistance to

eliminate or severely reduce infections by, for instance, sea lice in

salmon and WSSV in shrimp. These projects are utilising a suite of

technologies that have been enabled by ultra-high-throughput

sequencing, such as single nuclei and spatial transcriptomics and SNP

GWAS. Newly developed methodologies like in-vivo or in-vitro gene

editing and functional testing hold great promise for helping to find

and test genetic mechanisms affecting host resistance. These projects

are also exploring the possibility of using genomic selection and gene

editing with CRISPR-Cas9 to create host populations that will resist

these diseases. The implementation of these technologies needs to be

carefully considered. Practical methods that will allow easy adoption,

implementation and dissemination by aquaculture sectors are needed.

Population genetic variability needs to be maintained, inbreeding lim-

ited and possibilities for the genetic improvement of other important

traits must be ensured. Ethical concerns, particularly about the use of

gene editing methodology, need to be openly discussed and debated

in public arenas, and thorough testing and safeguards (e.g., sterilisa-

tion) are needed to ensure that there are no negative consequences

for the wild populations of these species or for the broader

ecosystem.

The application of new genomic technologies and methodologies

is expected to generate knowledge about genes that trigger a more

effective immune response in some species or lines; the effect that

could be realised by editing these genes in more susceptible species

or lines; potential lice attractants, repellents and assays; and the

extent of additive genetic variation affecting the production and

release of important immune factors and semiochemicals. Such knowl-

edge could lead to the development of feed additives, gene edits, new

vaccines and the enhancement of genomic breeding value estimation

to promote host resistance. The epidemiological implications of these

applications on the infectivity and virulence of aquatic diseases needs

to be explored, and routines need to be devised to enhance the sup-

pression of disease in the general aquaculture environment.

Such projects are ambitious in that it is hypothesised that specific

semiochemical or immune pathways play major roles in differentiating

disease-resistant from disease-susceptible hosts and that these differ-

ences are measurable, have a strong genetic basis, have implications

for the epidemiology of infection and that genomic selection and/or

gene editing approaches can be effectively and sustainably applied to

reduce or eliminate the effect of disease on the host without counter

evolutionary responses by the infectious agent taking effect. The
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long-term suppression of disease will only be realised through a col-

laborative and coordinated multi-disciplinary effort involving scientists

working closely with aquaculture industry and government. Such

efforts are likely to significantly advance our understanding of host–

parasite and host-disease interactions and mechanisms affecting resis-

tance to disease and should result in significant economic impacts for

aquaculture sectors, benefit the welfare of production animals and

create ecosystem benefits for natural populations of these species.
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