
Drivers of bat activity at wind turbines advocate for mitigating bat 1 

exposure using multicriteria algorithm-based curtailment 2 

Kévin Barré1,2, Jérémy S.P. Froidevaux1,2,3,4, Alejandro Sotillo1,2, Charlotte Roemer1, Christian 3 

Kerbiriou1,2 4 

1 Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum national d’Histoire 5 

naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue 6 

Cuvier, 75005 Paris, France 7 
2 Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum national d’Histoire 8 

naturelle, Station de Biologie Marine, 1 place de la Croix, 29900 Concarneau, France 9 
3 University of Stirling, Biological and Environmental Sciences, Faculty of Natural Sciences, 10 

Stirling, UK  11 
4 University of Bristol, School of Biological Sciences, Life Sciences Building, 24 Tyndall 12 

Avenue, BS8 1TQ Bristol, UK 13 

14 

15 

Corresponding author: 16 

Kévin Barré 17 

kevin.barre@mnhn.fr 18 

+33 2 98 50 99 2819 

20 

21 

Accepted refereed manuscript of: Barré K, Froidevaux JSP, Sotillo A, Roemer C & Kerbiriou C (2023) Drivers of bat activity at wind 
turbines advocate for mitigating bat exposure using multicriteria algorithm-based curtailment. Science of The Total Environment, 866, Art. 
No.: 161404. https://doi.org/10.1016/j.scitotenv.2023.161404
© 2023, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:kevin.barre@mnhn.fr
https://doi.org/10.1016/j.scitotenv.2023.161404
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 22 

Wind turbine development is growing exponentially and faster than other sources of renewable 23 

energy worldwide. While multi-turbine facilities have small physical footprint, they are not free 24 

from negative impacts on wildlife. This is particularly true for bats, whose population viability 25 

can be threatened by wind turbines through mortality events due to collisions. Wind turbine 26 

curtailment (hereafter referred to as “blanket curtailment”) in non-winter periods at low wind 27 

speeds and mild temperatures (i.e. when bats are active and wind energy production is low) can 28 

reduce fatalities, but show variable and incomplete effectiveness because other factors affect 29 

fatality risks including landscape features, rain, turbine functioning, and seasonality. The 30 

combined effects of these drivers, and their potential as criteria in algorithm-based curtailment, 31 

have so far received little attention. We compiled bat acoustic data recorded over four years at 32 

34 wind turbine nacelles in France from post-construction regulatory studies, including 8,619 33 

entire nights (251±58 nights per wind turbine on average). We modelled nightly bat activity in 34 

relation to its multiple drivers for three bat guilds, and assessed whether curtailment based on 35 

algorithm would be more efficient to limit bat exposure than blanket curtailment based on 36 

various combinations of unique wind speed and temperature thresholds. We found that 37 

landscape features, weather conditions, seasonality, and turbine functioning determine bat 38 

activity at nacelles. Algorithm-based curtailment is more efficient than blanket curtailment, and 39 

has the potential to drastically reduce bat exposure while sustaining the same energy production. 40 

Compared to blanket curtailment, the algorithm curtailment reduces average exposure by 20 to 41 

29% and 7 to 12% for the high-risk guilds of long- and mid-range echolocators, and by 24 to 42 

31% for the low-risk guild of short-range echolocators. These findings call for the use of 43 

algorithm curtailment as both power production and biodiversity benefits will be higher in most 44 

situations. 45 
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1. Introduction 48 

Wind power generation produces near-zero greenhouse gas emissions during the operational 49 

phase, has short greenhouse gas payback time, and constitutes an efficient and sustainable way 50 

for the transition towards reduced global greenhouse gas emissions (Dammeier et al., 2019; 51 

Veers et al., 2019). As a consequence and in line with international treaties such as the 2016 52 

Paris agreement to reduce global greenhouse gas emissions, wind turbine installation has grown 53 

exponentially over the last 20 years and currently represents the most rapidly expanding form 54 

of renewable energy worldwide (GWEC, 2021). While wind farm installation can have a 55 

relatively small footprint in terms of land conversion compared to other development projects, 56 

it still entails negative impacts on wildlife, particularly for insectivorous bats through mortality 57 

events by collision. Such increases in mortality are likely to impinge on the viability of 58 

populations (Friedenberg and Frick, 2021; Frick et al., 2017). This is especially true for 59 

migratory and long-range echolocating bat species, which are the most sensitive to collisions 60 

as they fly more often at the height at which turbines operate (Roemer et al., 2017). In addition 61 

to mortality, some bat species avoid areas adjacent to wind turbines leading to a reduction of 62 

habitat availability (Barré et al., 2018). 63 

In the European Union and in many countries worldwide, wind energy developers must carry 64 

out an Environmental Impact Assessment (EIA) prior to any wind farm installation to evaluate 65 

potential environmental consequences and the measures required to avoid impacts. Developers 66 

must also monitor impacts during the operational phase (e.g. decree no. 0198 of August 27, 67 

2011, in France). However, guidelines to avoid “areas where high bat activity has been 68 

determined by impact assessment” (EUROBATS; Rodrigues et al., 2015) appear to be poorly 69 

implemented (Barré et al., 2022). When impacts cannot be avoided, measures fot their reduction 70 

or, as a last resort, offsetting, must be implemented to achieve a state of no net loss of 71 

biodiversity (i.e. the mitigation hierarchy framework; Business and Biodiversity Offsets 72 



Programme (BBOP), 2012). Wind turbine curtailment at low wind speeds and mild 73 

temperatures – when bats are highly active and energy production is low, hereafter referred to 74 

as “blanket curtailment” – is a reduction measure that offers promising opportunities to 75 

reconcile bat conservation and wind energy (Adams et al., 2021; Whitby et al., 2021; Voigt et 76 

al., 2015; Arnett et al., 2011; Baerwald et al., 2009). One of the most common blanket 77 

curtailment strategies is based on a simple combination of a maximum wind speed threshold 78 

(most often between 3.5 and 8 m/s) and a minimum temperature threshold (most often around 79 

10°C). Respectively below and above those thresholds, the blades are turned to a different angle 80 

(i.e. feathered) to limit their rotation rate to less than one per minute, due to expected favourable 81 

conditions for bats. Blanket curtailment is mostly limited to non-winter periods. This approach 82 

can significantly reduce the fatality risk, but shows variable and incomplete effectiveness 83 

(Voigt et al., 2022; Adams et al., 2021; Whitby et al., 2021; Măntoiu et al., 2020). Besides wind 84 

speed and temperature, landscape features and other weather factors such as rain also drive bat 85 

fatality risk (Thompson et al., 2017; Santos et al., 2013). Indeed, bat activity at wind turbine 86 

nacelles, which links to fatality risk ( Peterson et al., 2021; Korner-Nievergelt et al., 2013), also 87 

depends on the weather, season, landscape features, and wind turbine dimensions and rotation 88 

speed (Roemer et al., 2019; Behr et al., 2017; Cryan et al., 2014; Brinkmann et al., 2011; Horn 89 

et al., 2008). Consequently, curtailment strategies based on multifactor algorithms have the 90 

potential to be more efficient in reducing the fatality risk. Indeed, the use of an algorithm to 91 

curtail wind turbines in real-time based on weather factors, date, and nightly time, should allow 92 

avoiding most collisions while minimizing the loss of production (Behr et al., 2017).  93 

Behr et al. (2017) and Brinkmann et al. (2011) are two of the few studies that propose this type 94 

of multicriteria framework to curtail wind turbines. These studies were based on data sampled 95 

in 2008 in Germany covering six months at 70 wind turbine nacelles and 35 different sites. To 96 

our knowledge, no peer-reviewed study has examined simultaneously and on a 97 



spatiotemporally extensive dataset all drivers of bat exposure (i.e. landscape features, weather 98 

conditions, date, and wind turbine characteristics), nor assessed the possibility to use them in 99 

guild specific algorithms to inform wind turbine curtailment.  100 

To assess the potential of multicriteria curtailment algorithms, we compiled bat acoustic data 101 

recorded at wind turbine nacelles in France by wind energy developers in a context of post-102 

construction regulatory studies, while homogeneously re-analysing acoustic data (i.e. using the 103 

same automated bat call identification software). Reprocessed bat acoustic data allowed us to 104 

build a standardised bat activity metric at nacelle height known to be a good predictor of fatality 105 

risk (Peterson et al., 2021; Korner-Nievergelt et al., 2013). Given the absence of national 106 

guidelines in France concerning the characteristics and settings of bat recorders for bat 107 

monitoring at nacelles and the large number of engineering consultants involved in data 108 

collection, we expected a large variation in the methods (Coly et al., 2017). Thus, our first 109 

objective was to assess whether monitoring methods (devices and settings) or confounding 110 

effects with landscape features, date, weather and wind turbine characteristics would bias the 111 

comparison of bat activity between wind turbines. This assessment was intended to filter out 112 

data from some wind turbines if necessary, and highlight the need for better national or 113 

international cooperation in the choice of materials and parameters in the case where the current 114 

situation would not allow meta-analyses. Once any method bias was controlled for, our second 115 

objective was to determine the main factors influencing bat activity at nacelles. We expected 116 

bat activity to increase with increasing landscape quality (e.g. by an increasing amount of 117 

forests, proximity to wetlands, or land use heterogeneity; Put et al., 2019; Sirami et al., 2013; 118 

Boughey et al., 2011a) and decreasing blade rotation speed (Cryan et al., 2014; Horn et al., 119 

2008), and to be higher during nights with good weather conditions (i.e. high temperature, low 120 

wind speed and no rain; Voigt et al., 2015; Erickson and West, 2002) and at the end of summer 121 

(Heim et al., 2016). Finally, our third objective was to compare on a per-night scale the 122 



performance of a curtailment algorithm based on multiple factors to that of a blanket curtailment 123 

method based on various combinations of unique wind speed and temperature thresholds, in 124 

terms of both bat activity exposure and energy production. We expected the algorithm-based 125 

curtailment to be more efficient in reducing bat exposure compared to blanket curtailment, by 126 

avoiding a larger percentage of bat activity occurring when blades are moving, while involving 127 

smaller losses of energy production.   128 



2. Methods 129 

2.1. Acoustic data collection and processing 130 

We compiled existing raw acoustic data (i.e. sound files in raw or wav format) of 14,937 131 

complete recording nights at 59 wind turbine nacelles (including 20 models) located on 55 wind 132 

farms in France (Fig. 1; Table S1). These data were provided by nine wind farm developers and 133 

produced by 12 consulting firms and non-governmental organizations as part of regulatory post-134 

implementation impact monitoring studies. Each of the 59 wind turbines was monitored on 135 

average for 251 nights (min: 103; max: 514). The monitored nights covered all months of the 136 

year and spanned four years between 2017 and 2020; 10% of the sites were monitored for more 137 

than one year. The year 2017 represents 2% of nights, 2018 18% of nights, 2019 79% of nights 138 

and 2020 0.4% of nights (Fig. S1). Depending on the analyses conducted, the complete set or 139 

subset of these data were used (see Statistical analysis section). 140 

Three types of recorders were used: Batcorder at 18 wind turbines (versions 1, 2 and 3; ecoObs), 141 

Batmode S+ at 34 wind turbines (bat bioacoustics technology GmbH), and Song Meters at eight 142 

wind turbines (SM3BAT and SM4BAT; Wildlife Acoustics). All recorders were positioned at 143 

the bottom of the nacelle. Each was associated with one to three triggering thresholds, i.e. a 144 

built-in recording control algorithm which started the recording when a sound event exceeded 145 

a given sound level (see Supporting information S1 for more details).  146 

Acoustic monitoring was always performed throughout the night, from sunset to sunrise. We 147 

used the number of bat passes (hereafter referred to as “activity”) or the presence/absence 148 

(hereafter referred to as “occurrence”) recorded during a night as a measure of bat visits with 149 

exposure (see section 2.3 for more details). We defined a bat pass as one or more echolocation 150 

calls within a five-second interval (Kerbiriou et al., 2019). All 731,717 bat passes were 151 

automatically classified to the closest taxonomic level using the Tadarida software (Bas et al., 152 

2017). Since most bat species had very low occurrence (Table S1), we pooled together species 153 



into three guilds based on their similar echolocation call structures and therefore similar 154 

foraging strategies: long-range echolocators (LRE), mid-range echolocators (MRE) and short-155 

range echolocators (SRE) (Frey-Ehrenbold et al., 2013), see Table S2 for species composition. 156 

Long-range echolocators are especially sensitive to fatality risks with wind turbines due to the 157 

great part of the time they spend at height (i.e. 20 to 45 m above ground level), followed by the 158 

mid-range echolocators (Table S2; Roemer et al., 2017). Although grouping species into these 159 

three guilds prevented misidentification problems between cryptic species, noise in the nacelle 160 

due to wind turbine functioning generated many false positives, especially at very high blade 161 

speeds. We followed the approach of Barré et al. (2019) and applied a maximum false positive 162 

tolerance of 50% to discard these interferences (see Barré et al. (2019) for more details), which 163 

reduced the dataset to 98,627 bat passes. This reduction led to discard 6.55 to 9.93% fewer false 164 

positives for Batmode data compared to other recorders. 165 

 166 

2.2. Environmental and wind turbine variables 167 

To determine which factors influence bat activity and occurrence at wind turbine nacelles, we 168 

collected or computed variables related to landscape composition and heterogeneity, weather 169 

conditions, and wind turbine functioning and dimensions.  170 

Landscape variables - We considered variables representing the surface cover of five land-use 171 

types  known to positively or negatively affect bats: impervious surfaces (Azam et al., 2016; 172 

Dixon, 2011), arable lands (Put et al., 2019), grasslands (Froidevaux et al., 2017; Roeleke et 173 

al., 2016; Lentini et al., 2012), forests (Heim et al., 2017; Boughey et al., 2011a) and water 174 

bodies (De Conno et al., 2018; Sirami et al., 2013). These variables were computed around the 175 

59 wind turbines as proportions of the total area for variables presenting enough variations 176 

(impervious surfaces, arable lands, grasslands and forests), in ten area buffers around wind 177 

turbines (50, 100, 250, 500, 1000, 2000, 3000, 4000, 5000 and 10000 m radius) to use the most 178 



relevant scale for each variable (Kalda et al., 2015, see Statistical Analysis section for more 179 

details). We also calculated the Euclidean distance to the nearest impervious surfaces, forests 180 

and water bodies. Moreover, we computed landscape metrics depicting landscape 181 

configurational and compositional heterogeneity (Monck-Whipp et al., 2017), including edge 182 

density (i.e. the density of ecotones in m/ha), conditional entropy (i.e. an increasing index with 183 

increasing landscape complexity), patch richness density (i.e. the number of patch types 184 

standardised by the surface), and Shannon diversity index of habitat patches. These landscape 185 

metrics were computed using the R package landscapemetrics (Hesselbarth et al., 2019), for 186 

the ten radius sizes presented above. All landscape variables were extracted from the high-187 

resolution CES OSO land cover map 2018 available at https://www.theia-188 

land.fr/en/ceslist/land-cover-sec/  (Derksen et al., 2020). 189 

Weather variables - We collected the average wind speed (m/s) and temperature (°C) recorded 190 

by wind turbine nacelle weather stations in 10-minute intervals and averaged them on a nightly 191 

scale at each wind turbine (i.e. on the same scale as acoustic data). Since the amount of rainfall 192 

was not recorded by the nacelle weather stations, we collected the daily cumulated rain (mm) 193 

(i.e. over the 24-hour period from midnight of the day when the recording night started) using 194 

the weather database from E-OBS 195 

(https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles). 196 

Wind turbines variables - We collected dimensions of wind turbines which measured 45 to 139 197 

m (92 m on average) in nacelle height and 44 to 126 m (94 m on average) in rotor diameter 198 

(Table S1). We also collected the average rotation speed (km/h) at the tip of the blade in 10-199 

minute intervals, and averaged it on a nightly scale at each wind turbine. 200 

 201 

2.3. Statistical analysis 202 



We assessed drivers of measures of bat activity and occurrence around wind turbine nacelles, 203 

including factors related to landscape composition and heterogeneity, weather conditions, the 204 

Julian day, wind turbine functioning and dimensions and recording methods (i.e. the recorder 205 

type and the trigger sensitivity). In the first step, since we compiled data produced by different 206 

contributors, we expected the existence of multiple combinations between the recorder type and 207 

the trigger sensitivity. However, these recording methods deeply affect the number of bat passes 208 

recorded (Adams et al., 2012). Confounding effects between recording methods and factors of 209 

interest (e.g. landscape composition) could prevent modeling them simultaneously. Using all 210 

compiled data, we therefore tested for trends in the landscape composition and heterogeneity, 211 

weather conditions, and wind turbine functioning and dimensions between recording methods 212 

(i.e. a discrete variable including seven combinations between the recorder type and the trigger 213 

sensitivity), using Kruskal-Wallis tests and box plots. We then computed the proportion of 214 

variance explained by each variable (pseudo-R²) to assess whether the importance of the factors 215 

of interest (actual drivers of bat activity) was biased by the different recording methods. To 216 

properly study the drivers of bat activity at wind turbine nacelles, a prerequisite was that the 217 

recording methods do not capture an overwhelming part of the variance compared to the factors 218 

known to affect bat activity. To achieve this, we built one full Generalised Linear Mixed Model 219 

(GLMM, R package glmmTMB; Brooks et al., 2017) per bat guild, using LRE and MRE activity 220 

and SRE occurrence as response variables, and the landscape (see Supporting information S2 221 

for landscape variable selection and composition), weather conditions (i.e. average wind speed, 222 

average temperature and cumulated rain), the Julian day, and wind turbine functioning (i.e. 223 

average blades rotation speed) and dimensions (i.e. nacelle height and rotor diameter) as fixed 224 

effects (hereafter referred to as “explanatory variables”). Since we had a relatively small 225 

number of sites, we restricted the number of landscape variables to three; i.e. the same number 226 

as the other types of variables (i.e. three weather variables and three wind turbine functioning 227 



and dimension variables available). With such approach, models were always constituted of ten 228 

variables, allowing to avoid overparameterization. For landscape variables we pre-selected the 229 

best computing area buffer and in a second step selected the three ones – within the five 230 

landscape variables – with the best conjoint contributions (see Supporting Information S2 for 231 

more details). We used the wind turbine identifier and year as random effects to account for 232 

pseudo-replication (i.e. many recording nights per wind turbine) and inter-year variations in 233 

activity, associated with a negative binomial distribution for LRE and MRE guilds and a 234 

binomial distribution for SRE guild (see Supporting information S2 and Table S4 for the 235 

composition of full models). Then, we computed the pseudo-R² of each variable by subtracting 236 

the marginal R² of the full model and that of the model without the target variable, using the R 237 

package sjstats. 238 

The preliminary analysis showed that recording methods resulted in confounding effects with 239 

most other variables of interest and captured the largest variance part (Table S5; Figs. 2 & S2). 240 

Thus, to model bat activity or occurrence as a function of explanatory variables, we selected in 241 

a second step only one combination between the recorder type and the trigger sensitivity that 242 

removed any variation in recording methods. We chose the combination of the Batmode set to 243 

a trigger sensitivity of 37 dBSPL which had the largest dataset resulting in 34 wind turbines, 244 

8,619 nights and 65,775 bat passes. Based on this subset, we performed the same GLMMs 245 

workflow as presented above (see Supporting information S2 and Table S6 for more details) to 246 

assess the respective effects of explanatory variables on the LRE and MRE activity and SRE 247 

occurrence. For each explanatory variable, we checked the potential need for adding a non-248 

linear effect by visual inspection of Generalised Additive Mixed Models (GAMM, R package 249 

mgcv; Wood, 2011; see Table 1 for variables that required quadratic or cubic effects). We also 250 

checked the absence of multicollinearity by calculating the Variance Inflation Factor (VIF) for 251 

each explanatory variable (R package performance; Lüdecke et al., 2021). All variables showed 252 



a VIF<2, implying no evidence of multicollinearity (Chatterjee and Hadi, 2006). It should be 253 

noted that wind speed and blade speed were not excessively correlated thanks to maintenance 254 

periods that stopped the turbines in all wind conditions (Fig. S3). Overall model validation was 255 

performed using diagnostic plots (R packages DHARMa and performance;  Lüdecke et al., 256 

2021). Full models were compared to null ones using the Akaike information criterion (AIC) 257 

(Burnham and Anderson, 2002), and goodness of fit was assessed using the marginal R² 258 

(variance explained by the fixed effects) and conditional R² (variance explained by both fixed 259 

and random factors) values (Nakagawa and Schielzeth, 2013). All analyses were performed 260 

using a significance threshold of 5% in R statistical software v.4.0.3 (R Core Team, 2020). 261 

 262 

2.4. Assessing the effectiveness of using model equations to limit bat exposure compared to 263 

conventional curtailments 264 

Using the same Batmode dataset, we assessed whether curtailment of wind turbines based on 265 

multiple-factor models could be more efficient in limiting bat activity exposure at the scale of 266 

all wind turbines than commonly used blanket curtailment methods. For that, we trained full 267 

models for each guild on a 50% fully random subset of the dataset (hereafter referred to as 268 

“training dataset”) and predicted bat activity on the other 50% (hereafter referred to as 269 

“prediction dataset”), and this 100 times. Then, we computed for each prediction dataset the 270 

remaining percentage of bat activity (for LRE and MRE guilds) or occurrence (for SRE guild) 271 

(i.e. the real bat activity or occurrence recorded while the blades were moving) and the 272 

percentage of lost blade rotations (i.e. as a proxy of lost energy production) resulting of 273 

curtailing wind turbines following either of two methods: (i) curtailing above thresholds of bat 274 

activity predicted from full models (hereafter referred to as “multicriteria curtailment 275 

algorithm”), and (ii) curtailing below wind speed thresholds and this either without temperature 276 

threshold or with different minimum temperatures required from 2 to 18°C (hereafter referred 277 



to as “blanket curtailment”). Finally, we plotted the relationship between the remaining 278 

percentage of bat activity or occurrence and the percentage of lost blade rotations for both 279 

curtailment methods to evaluate their effectiveness in limiting exposure (Fig. 3A). The 280 

comparison of both curtailment methods was conducted for the non-winter periods only. 281 

To assess whether the effectiveness was relevant for all wind turbines, we also plotted the 282 

relationship between the remaining percentage of bat activity and the percentage of lost blade 283 

rotations for each wind turbine independently. We computed Area Under Curve (AUC) values 284 

for both curtailment methods to evaluate which one was the most effective (i.e. with the highest 285 

AUC value) (R package MESS). We also estimated to what extent the effectiveness of 286 

curtailment methods was preserved when wind turbines included in the training dataset differed 287 

from those in the prediction dataset. For that, we repeated the procedure explained above, but 288 

using a training dataset constituted of data from 33 out of 34 wind turbines and a prediction 289 

dataset constituted of data from the 34th wind turbine, and we repeated it for each wind turbine 290 

to present its results while computing AUC values for both curtailment methods. These turbine-291 

by-turbine assessments were only conducted for LRE and MRE guilds for which we had enough 292 

data for each wind turbines. 293 

Finally, because the percentage of lost blade rotations did not constitute a perfect proxy of lost 294 

energy production, we assessed whether the relative comparison of lost blade rotations between 295 

curtailment methods as a proxy of energy production losses was biased (e.g. one method for a 296 

given level of lost blade rotations involving slower blade speeds, and in turn lower energy 297 

losses, than the other method). For that we compared the distribution of blade speeds inside lost 298 

blade rotations between the two curtailment methods.  299 



3. Results 300 

3.1. Bat monitoring 301 

A total 98,627 bat passes were recorded at 59 wind turbines and 14,937 nights. However, as 302 

described above, in order to avoid confounding effects between recording methods and other 303 

explanatory variables, we only selected wind turbines monitored using Batmode recorders 304 

which exhibited no trigger sensitivity variation, while including most of the data (i.e. 34 wind 305 

turbines out of 59 and 8,619 nights out of 14,937). Data from Batmode resulted in a total of 306 

65,775 bat passes recorded, with 43,519 passes of LRE, 22,135 passes of MRE and 121 passes 307 

of SRE (see Table S3 for species composition). At least one pass of LRE, MRE and SRE was 308 

recorded in 35%, 18% and 1% of nights, respectively (Table S3). 309 

 310 

3.2. Drivers of bat activity around nacelles 311 

Full models of bat activity and occurrence showed smaller AIC than null models (delta AIC of 312 

full models from -50  to -1468), with 33%, 55% and 51% variance explained by fixed effects 313 

and 78%, 60% and 54% by both fixed and random effects, for LRE, MRE and SRE guilds, 314 

respectively (Table S6). 315 

Regarding landscape variables, LRE activity was positively affected by the landscape Shannon 316 

diversity index of habitat patches at the 10,000 m radius scale while MRE activity increased 317 

with increasing patch richness density at the 1,000 m radius scale and forest proportion at the 318 

10,000 m radius scale. We also found significant positive relationships between SRE 319 

occurrence and edge density at the 10,000 m radius scale and the proportion of impervious 320 

surfaces at the 100 m radius scale (Fig. 4; Table 1). Concerning wind turbine functioning and 321 

dimensions, increasing average blade speed significantly reduced the activity/occurrence of all 322 

guilds, while no effect of nacelle height and rotor size were found (Figs. 4; Table 1). Concerning 323 



weather conditions, average temperature positively and non-linearly affected the activity of 324 

LRE and MRE guilds, while the average wind speed and the cumulated rain negatively affected 325 

(non-linearly and linearly, respectively) the activity/occurrence of all guilds (Fig. 4; Table 1). 326 

Finally, we found seasonality in the activity of the LRE and MRE guilds, manifested as a cubic 327 

and quadratic relationship, respectively, with the Julian date: increasing between January and 328 

August, and decreasing from September to December (Fig. 4; Table 1). 329 

 330 

3.3. Effectiveness of model equations to limit bat exposure compared to conventional 331 

curtailments  332 

For the blanket curtailment, we found that increasing wind speed thresholds below which wind 333 

turbines should be curtailed almost always linearly decreased the real remaining bat activity for 334 

all guilds (Fig. S4A-C). For the multicriteria curtailment algorithm, we found that decreasing 335 

the predicted bat activity above which wind turbines should be curtailed decreased the actual 336 

bat activity or occurrence exposed: exponentially for LRE activity, logistically for MRE activity 337 

and linearly for SRE occurrence. (Fig. S4A-C). Moreover, expanding curtailment increased the 338 

percentage of lost blade rotations differently between methods: with logistic increases when 339 

using wind speed and temperature criteria, and exponential increases when using a multicriteria 340 

curtailment algorithm. (Fig. 4D-F).  341 

When we linked the real bat activity or occurrence exposed with the percentage of lost blade 342 

rotations, we found that the multicriteria curtailment algorithm was more efficient than the 343 

blanket curtailment for all guilds (Figs. 3B & 5). We found that the multicriteria curtailment 344 

algorithm at the scale of all wind turbines exhibited on average 20% and 9% less bat activity 345 

exposed than blanket curtailment without temperature threshold for LRE and MRE guilds, 346 

respectively, and 24% less occurrence exposed for SRE guild (Fig. 3B1). When blanket 347 

curtailment included temperature thresholds, the multicriteria curtailment algorithm exhibited 348 



on average 20 to 29%, 7 to 12% and 24 to 31% less exposure for LRE, MRE and SRE guilds, 349 

respectively, depending on the temperature threshold considered in blanket curtailment (Figs. 350 

3B2 & 5). The higher efficiency of the multicriteria curtailment algorithm was confirmed by its 351 

AUC values which were higher than those of blanket curtailment for a 10°C threshold at 81 and 352 

75% of wind turbines for LRE and MRE guilds, respectively (Figs. S5 & S6). Finally, when 353 

the algorithm was trained on 33 out of 34 wind turbines and predictions made on the remaining 354 

wind turbine(i.e. model training and predictions based on independent sites), algorithm 355 

curtailment had higher AUC values than blanket curtailment at 81 and 69% of wind turbines 356 

for LRE and MRE, respectively (Fig. S7 & S8).  357 

Finally, blade speed distributions did not differ between lost blade rotations of both curtailment 358 

methods, thus suggesting that the relative comparison of lost blade rotations between 359 

curtailment methods as a proxy of energy production losses was not biased (Fig. S9).  360 



4. Discussion 361 

Identifying drivers of bat exposure to wind turbines from acoustic monitoring at nacelles, and 362 

the possibility of their combined use as criteria in algorithm-based curtailment, have so far 363 

received little attention in the scientific literature in the context of wind turbine impact 364 

mitigation. Our study shows that recording methods should be accounted for when using 365 

acoustic data continuously produced in post-construction regulatory studies, before analysing 366 

the drivers of bat exposure. Once detection method biases were avoided, results showed that it 367 

is possible to disentangle the main drivers. Our findings revealed that landscape features, 368 

weather conditions, seasonality, and wind turbine functioning determine the activity of all bat 369 

guilds at nacelles. Algorithms including all these drivers to curtail wind turbines above a given 370 

level of predicted bat activity are more efficient than common blanket curtailment methods 371 

based on unique wind speed and temperature thresholds on the activity period of bats, as they 372 

reduce more exposure while sustaining the same energy production. 373 

 374 

4.1. Assessing bias in recording methods 375 

One of the aims of this study was to take advantage of the numerous pre-existing data from 376 

post-construction monitoring studies instead of designing a field study that would require 377 

paramount monetary and time investments. A prerequisite for using all aggregated data was the 378 

absence of biases related to the recording methods. Unfortunately, when considering data 379 

collected using different recording methods, the combination of recorder type and triggering 380 

sensitivity explained much more variance than all well-known drivers of bat activity (Roemer 381 

et al., 2019; Behr et al., 2017; Cryan et al., 2014; Horn et al., 2008), minimizing their relative 382 

importance in the models. All gradients of drivers strongly varied among recorder type/trigger 383 

sensitivity combinations, thus preventing any modelling of the effects of drivers on bat activity 384 

based on the full dataset due to confounding effects. Indeed, different recorder type/trigger 385 



sensitivity combinations can lead to very different levels of bat activity between sites due to the 386 

different detection distances generated by the material specificities and settings (Darras et al., 387 

2020; Adams et al., 2012). We opted to compensate for this problem by modelling the effect of 388 

the drivers on bat activity after separating the recorder type/trigger sensitivity combinations. 389 

However, harmonising monitoring methods across all sites would avoid such partitioning and 390 

loss of data. Alternatively, future studies could assess the possibility of using corrective 391 

coefficients of activity between different recorder type/trigger sensitivity combinations, or 392 

establish longer bat pass units, to make the sites monitored in different ways comparable.  393 

 394 

4.2. Drivers of bat activity around nacelles 395 

Our results highlight the high importance of accounting for all drivers (i.e. landscape, wind 396 

turbine functioning, weather, and date) to better account for the variation of bat activity at 397 

nacelle height. As expected from previous studies looking at fatality risk or bat activity at 398 

nacelle height, we found a joint effect of all types of drivers on bat activity (Behr et al., 2017; 399 

Thompson et al., 2017; Cryan et al., 2014; Santos et al., 2013; Horn et al., 2008).  400 

Specifically, LRE and MRE activity increased with the Shannon diversity index of habitat 401 

patches and patch richness density, respectively, as previously reported by (Froidevaux et al., 402 

2022; Mendes et al., 2017; Monck-Whipp et al., 2017). Edge density also positively affected 403 

the SRE guild occurrence, as previously documented for hedgerow density (Lacoeuilhe et al., 404 

2016; Verboom and Huitema, 1997) or the density of all edge habitats (Ancillotto et al., 2017; 405 

Mendes et al., 2017). We also found forest cover to positively affect MRE activity, consistent 406 

with Roemer et al. (2019), who showed that bat activity at height decreased with the distance 407 

to the forest, and with Boughey et al. (2011a) who found higher bat activity at ground level 408 

with an increasing proportion of forest. Unexpectedly, our model revealed a positive effect of 409 

impervious habitat proportion on SRE activity, a relationship that is elsewhere described as 410 



negative (Gili et al., 2020). Impervious habitat in this dataset corresponds to roads and the buffer 411 

scale selected is very local (100m). This is likely an indirect positive effect related to 412 

ecotone/hedgerow associated with roads (i.e. road access to a wind turbine), a favourable 413 

context for foraging of narrow- and edge-space foragers of the SRE guild (Denzinger and 414 

Schnitzler, 2013). 415 

Increasing blade rotation speed logistically reduced LRE activity and SRE occurrence, and 416 

linearly decreased MRE activity, in accordance with previous studies (Cryan et al., 2014; Horn 417 

et al., 2008). It should be noted that it is unlikely that this result fully mirrors the effect of wind 418 

speed because wind speed and blade speed are not fully confounded (Fig. S3). In addition, the 419 

negative effect of blade rotation speed is preserved at both high and low wind speeds (Fig. S10).  420 

Regarding weather conditions, increasing temperatures promoted the activity of LRE and MRE 421 

guilds, while increasing wind speeds and cumulated rain suppressed the activity of all guilds. 422 

These results corroborate studies of bat activity at height, showing very similar patterns (Wellig 423 

et al., 2018; Behr et al., 2017; Horn et al., 2008; Arnett et al., 2006; Redell et al., 2006). 424 

Interestingly, both LRE and MRE guilds exhibited some tolerance to unfavourable weather 425 

conditions, with a non-negligible proportion of remaining activity in such conditions (see Fig. 426 

S11). For instance, above wind speeds of 8m/s, 9% of MRE activity and 12% of LRE activity 427 

remained; below a temperature of 10°C, 2% of MRE activity and 7% of LRE activity remained 428 

(Fig. S11), which is highly consistent with findings by Behr et al. (2017) in Germany.  429 

With respect to seasonality, a peak in LRE and MRE activity was detected in August, thus 430 

reinforcing previous studies reporting a peak in bat fatalities at wind turbines in this period 431 

(Schuster et al., 2015; Arnett et al., 2008).  432 

 433 



4.3. Assessing the effectiveness of using model equations to limit bat exposure compared to 434 

conventional curtailments  435 

The multifactor responses of bat activity and occurrence at wind turbine nacelles reported in 436 

this study highlight the crucial need for curtailment strategies based on all possible 437 

combinations of the driving factors, while proving that curtailment based on fixed 438 

environmental thresholds such as cut-in wind speed and temperature is not fully effective in 439 

avoiding bat exposure. 440 

Based on the relationship between the percentage of recorded bat activity or occurrence and the 441 

percentage of lost blade rotations entailed by each curtailment threshold (i.e. wind speed and 442 

temperature values for blanket curtailment and a predicted bat activity and occurrence value for 443 

multicriteria curtailment algorithm), multicriteria curtailment algorithm will save many more 444 

bats from exposure to spinning blades (i.e. on average 20 to 29%, 7 to 12% and 24 to 31% less 445 

exposure for LRE, MRE and SRE guilds, respectively, depending on temperature threshold 446 

considered in blanket curtailment). This result corroborates conclusions from Behr et al. (2017) 447 

who performed a similar assessment using the real loss of energy production and curtailment 448 

thresholds based on a mean number of fatalities per turbine and per year. The fact that the 449 

difference in efficiency is smaller for the MRE than for the LRE guild (both being at high risk 450 

of collision; Roemer et al., 2017), is mainly due to the fact that blanket curtailment is 451 

significantly less efficient for LREs as they are more tolerant to non-optimal weather conditions 452 

(Fig. S11). The increased effectiveness on LRE (the most collision-sensitive guild) reinforces 453 

the importance of moving from current blanket curtailments to a multi-criteria algorithm-based 454 

approach. 455 

 456 

4.4. Limitations and recommendations  457 



The study calls for prudence when using data from different recording methods that should be 458 

controlled before any modelling as they could strongly bias the algorithm to use for curtailment.  459 

This requires regulatory databases (as is the case with the DEPOBIO tool in France; 460 

https://depot-legal-biodiversite.naturefrance.fr/) to demand the input of metadata related to the 461 

methods used, or ideally to harmonise these methods. Thus, in order to be generalised to all 462 

types of material and settings, the algorithm should either be adapted to each type using 463 

appropriate data, or a ratio of equivalence in activity between pairs of material/settings should 464 

be defined in future studies. 465 

To go further in the modelling of bat exposure, the curtailment algorithm method we propose 466 

should be adapted on an intra-night scale to account for the variation of bat activity during the 467 

night and thus minimise even more production losses (Behr et al., 2017). In addition, our 468 

efficiency assessment does not rely on a real loss of energy production as such information is 469 

rarely available from wind energy developers. However, as blade speed distributions do not 470 

differ between lost blade rotations of both curtailment methods, the relative comparison of lost 471 

blade rotations between curtailment methods as a proxy of energy production losses is not 472 

biased. Bat activity around nacelles was reported to be a good proxy for fatality risk (Peterson 473 

et al., 2021; Korner-Nievergelt et al., 2013), but we encourage further research on the 474 

relationship between activity and mortality to refine algorithms towards an explicit reduction 475 

of the real collision risk, either by giving more weight to conditions in which activity is most 476 

strongly correlated with mortality or by using mortality data directly. Acoustic-informed 477 

blanket curtailment is another method practised in North America, notably using the Turbine 478 

Integrated Mortality Reduction (TIMR) system which, in addition to a wind-speed threshold, 479 

integrates a real-time bat activity criterion. Although this system is not directly comparable to 480 

our algorithm (intra-night timescale, effectiveness assessed using daily fatality surveys), it 481 

seems to show similar effectiveness (i.e. a 37% reduction in exposure compared to blanket 482 



curtailment) (Rabie et al., 2022; Hayes et al., 2019). Future studies could therefore compare 483 

these two types of curtailment strategies on an equivalent basis to highlight the strengths and 484 

weaknesses of each, especially regarding technological constraints.  Finally, the baseline data 485 

used to train the algorithm should be updated on a regular basis with data from the latest wind 486 

turbine models in order to explicitly incorporate their dimensional changes into the modelling.  487 

The strategy of algorithm-based curtailment should be conceived on a large scale to save a 488 

global percentage of the bat community from exposure, although on some sites the method may 489 

currently be less effective. In the future, to capitalise on large-scale data, algorithms could be 490 

developed using national data and applied site by site as it accounts for the landscape context, 491 

and could be regularly updated with data from new post-construction monitoring. This will 492 

require more years and sites of monitoring to account for the inter-annual stochasticity of the 493 

responses and to cover larger landscape gradients, respectively, and would also require updating 494 

algorithms with the most recent data to consider climate change and especially the gradual 495 

increase in temperature. The large amount of regulatory post-implementation acoustic 496 

monitoring performed each year could be included annually to update algorithms so that the 497 

exposure threshold defined by the central authority is continuously based on a predictive tool 498 

accounting for climate change. Since temperate insectivorous bat species respond to a 499 

documented set of landscape characteristics, weather conditions and seasonality, we expect the 500 

development of such curtailment algorithms to be efficient and of great relevance in most 501 

temperate ecosystems.  502 

Finally, our study calls for the use of multicriteria curtailment algorithms instead of basic 503 

blanket curtailments as power production is clearly predicted to be higher and the benefit for 504 

bats is high in most situations (Behr et al., 2017).  505 
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 773 

Figure 1. Location of monitoring sites in France according to bat recorder types.  774 



 775 

Figure 2. Percentage of bat activity and occurrence variance explained by each variable (i.e. 776 

pseudo-R²) related to acoustic method, landscape, weather and time, and wind turbine features 777 

from generalized linear mixed models based on data from all recorder types (i.e. 59 sites, 14,937 778 

nights and 98,627 bat passes). 779 



 780 



Figure 3.  Panel A depicts the method to compare blanket (black) and algorithm-based (blue) 781 

curtailment methods' effectiveness to limit bat activity exposure. One hundred iterations were 782 

performed to train generalized linear mixed models (GLMM) on a random selection of 50% of 783 

the Batmode dataset and predict bat activity (for LRE and MRE guilds) and occurrence (for 784 

SRE guild) as well as computing remaining recorded bat activity and lost blade rotations on the 785 

remaining 50% (see section 2.4). The method first links the percentage of recorded bat activity 786 

and the percentage of lost blade rotations, respectively, to the wind speed threshold below which 787 

the turbine is curtailed when no temperature threshold and various minimum temperature 788 

thresholds were applied (blanket curtailment, black) and the predicted bat activity above which 789 

the turbine is curtailed (curtailment algorithm, blue). Then the method links the percentage of 790 

remaining recorded bat activity and the percentage of lost blade rotations for both curtailment 791 

methods to compare their effectiveness presented for the three guilds in panel B. For the blanket 792 

curtailment, panel B shows the effectiveness of the method when no temperature threshold (B1) 793 

and a minimum temperature of 10°C (B2) were applied. 794 

  795 



 796 



Figure 4. Predicted number of bat passes or probability of presence from generalized linear 797 

mixed models and 95% confidence intervals as a function of significant variables related to 798 

landscape (green), wind turbine (grey), and weather and date (blue), based on the Batmode 799 

dataset. 800 
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 802 

Figure 5. Average change in remaining percentage of bat activity exposed to spinning blades 803 

and associated 95% intervals between blanket and algorithm-based curtailments for various 804 

temperature thresholds in the blanket curtailment. Average change was computed using each 805 

intra-iteration difference between curtailment methods.  806 



Table 1. Estimates, standard errors and p-values from full models testing the effect of landscape, 807 

wind turbine and weather/time variables on LRE and MRE activity and SRE occurrence. 808 

Missing values indicate that the landscape variable was not selected in full models (only the 809 

three best explaining ones per guild were included, see Statistical analysis section for more 810 

details) or the no need for quadratic or cubic effects on weather/date variables. Significant 811 

effects (P<0.05) are shown in bold. 812 

Variable LRE MRE SRE 

  Estimate±SE P Estimate±SE P Estimate±SE P 

Intercept -0.670±0.733 0.361 -0.492±0.122 <0.001 -6.614±0.537 <0.001 

Landscape variables       

Edge density (m/ha, 10,000 m) - - - - 1.884±0.304 <0.001 

Patch richness density (Number per 100 ha, 1,000 m) - - 0.608±0.175 0.001 - - 

Arable land proportion (10,000 m) - - - - 0.674±0.378 0.075 

Shannon diversity index (10,000 m) 0.894±0.283 0.002 - - - - 

Distance to impervious (m) -0.257±0.416 0.537 -0.194 ±0.204 0.342 - - 

Impervious proportion (100 m) - - - - 0.355±0.137 0.010 

Distance to forest (m) -0.227±0.312 0.467 - - - - 

Forest proportion (10,000 m) - - 0.313±0.119 0.008 - - 

Wind turbine variables       

Rotor diameter (m) 0.162±0.270 0.549 0.037±0.151 0.805 0.532±0.344 0.122 

Nacelle height (m) 0.153±0.270 0.572 0.192±0.145 0.185 -0.064±0.331 0.845 

Average blade speed (km/h) 0.155±0.128 0.223 -0.751±0.221 <0.001 -1.148±0.508 0.024 

Average blade speed^2 -0.761±0.155 <0.001 0.402±0.259 0.120 1.775±0.513 <0.001 

Weather/date variables       

Julian day 0.227±0.040 <0.001 -1.516±0.364 <0.001 0.121±0.137 0.377 

Julian day^2 0.028±0.052 0.585 1.736±0.365 <0.001 - - 

Julian day^3 -0.417±0.035 <0.001 - - - - 

Average temperature (°C) -0.507±0.133 <0.001 2.030±0.222 <0.001 0.225±0.141 0.112 

Average temperature^2 1.044±0.126 <0.001 -1.055±0.201 <0.001 - - 

Average wind speed (m/s) -1.988±0.159 <0.001 -3.272±0.269 <0.001 -1.868±0.584 0.001 

Average wind speed^2 1.963±0.155 <0.001 2.751±0.272 <0.001 1.630±0.438 <0.001 

Cumulated rain (mm) -0.178±0.031 <0.001 -0.330±0.052 <0.001 -0.422±0.185 0.022 
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