Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/9409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurke, Edmunden_UK
dc.contributor.authorHyde, Matthewen_UK
dc.contributor.authorKendall, Grahamen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorOzcan, Enderen_UK
dc.contributor.authorWoodward, Johnen_UK
dc.contributor.editorMumford, CLen_UK
dc.contributor.editorJain, LCen_UK
dc.date.accessioned2012-12-18T10:37:35Z-
dc.date.available2012-12-18T10:37:35Zen_UK
dc.date.issued2009en_UK
dc.identifier.urihttp://hdl.handle.net/1893/9409-
dc.description.abstractHyper-heuristics represent a novel search methodology that is motivated by the goal of automating the process of selecting or combining simpler heuristics in order to solve hard computational search problems. An extension of the original hyper-heuristic idea is to generate new heuristics which are not currently known. These approaches operate on a search space of heuristics rather than directly on a search space of solutions to the underlying problem which is the case with most meta-heuristics implementations. In the majority of hyper-heuristic studies so far, a framework is provided with a set of human designed heuristics, taken from the literature, and with good measures of performance in practice. A less well studied approach aims to generate new heuristics from a set of potential heuristic components. The purpose of this chapter is to discuss this class of hyper-heuristics, in which Genetic Programming is the most widely used methodology. A detailed discussion is presented including the steps needed to apply this technique, some representative case studies, a literature review of related work, and a discussion of relevant issues. Our aim is to convey the exciting potential of this innovative approach for automating the heuristic design process.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationBurke E, Hyde M, Kendall G, Ochoa G, Ozcan E & Woodward J (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford C & Jain L (eds.) Computational Intelligence: Collaboration, Fusion and Emergence. Intelligent Systems Reference Library, 1, Volume 1. Berlin and Heidelberg: Springer, pp. 177-201. http://www.springerlink.com/content/j11565558t12900u/en_UK
dc.relation.ispartofseriesIntelligent Systems Reference Library, 1, Volume 1en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectGenetic programming (Computer science)en_UK
dc.subjectArtificial intelligenceen_UK
dc.titleExploring hyper-heuristic methodologies with genetic programmingen_UK
dc.typePart of book or chapter of booken_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[ochoa_cmptnlintelligence_2009.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.citation.spage177en_UK
dc.citation.epage201en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://www.springerlink.com/content/j11565558t12900u/en_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.citation.btitleComputational Intelligence: Collaboration, Fusion and Emergenceen_UK
dc.citation.isbn978-3-642-01799-5_6en_UK
dc.publisher.addressBerlin and Heidelbergen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid754433en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.contributor.orcid0000-0002-2093-8990en_UK
dcterms.dateAccepted2009-12-31en_UK
dc.date.filedepositdate2012-10-08en_UK
rioxxterms.typeBook chapteren_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBurke, Edmund|en_UK
local.rioxx.authorHyde, Matthew|en_UK
local.rioxx.authorKendall, Graham|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorOzcan, Ender|en_UK
local.rioxx.authorWoodward, John|0000-0002-2093-8990en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMumford, CL|en_UK
local.rioxx.contributorJain, LC|en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameochoa_cmptnlintelligence_2009.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-642-01799-5_6en_UK
Appears in Collections:Computing Science and Mathematics Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
ochoa_cmptnlintelligence_2009.pdfFulltext - Published Version367.24 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.