Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/497
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCowie, Julie-
dc.contributor.advisorSmith, Leslie S.-
dc.contributor.authorOteniya, Lloyd-
dc.date.accessioned2008-10-30T11:15:42Z-
dc.date.available2008-10-30T11:15:42Z-
dc.date.issued2008-07-
dc.identifier.citationJ. Cowie, L. Oteniya, and R. Coles. Particle swarm optimisation for learn ing bayesian networks. In Sio Iong Ao, Leonid Gelman, David W. L. Hukins, Andrew Hunter, and A. M. Korsunsky, editors, Proceedings of World Congress on Engineering, Lecture Notes in Engineering and Computer Science, pages 71-76. Newswood Limited, 2007.en
dc.identifier.citationLloyd Oteniya, Julie Cowie, and Richard Coles. A clinical decision support system to aid in the diagnosis of dementia. In Proceedings of the 22nd HealthCare Computing Conference, pages 289 - 297, March 2005.en
dc.identifier.urihttp://hdl.handle.net/1893/497-
dc.description.abstractThe Bayesian network (BN) formalism is a powerful representation for encoding domains characterised by uncertainty. However, before it can be used it must first be constructed, which is a major challenge for any real-life problem. There are two broad approaches, namely the hand-crafted approach, which relies on a human expert, and the data-driven approach, which relies on data. The former approach is useful, however issues such as human bias can introduce errors into the model. We have conducted a literature review of the expert-driven approach, and we have cherry-picked a number of common methods, and engineered a framework to assist non-BN experts with expert-driven construction of BNs. The latter construction approach uses algorithms to construct the model from a data set. However, construction from data is provably NP-hard. To solve this problem, approximate, heuristic algorithms have been proposed; in particular, algorithms that assume an order between the nodes, therefore reducing the search space. However, traditionally, this approach relies on an expert providing the order among the variables --- an expert may not always be available, or may be unable to provide the order. Nevertheless, if a good order is available, these order-based algorithms have demonstrated good performance. More recent approaches attempt to ``learn'' a good order then use the order-based algorithm to discover the structure. To eliminate the need for order information during construction, we propose a search in the entire space of Bayesian network structures --- we present a novel approach for carrying out this task, and we demonstrate its performance against existing algorithms that search in the entire space and the space of orders. Finally, we employ the hand-crafting framework to construct models for the task of diagnosis in a ``real-life'' medical domain, dementia diagnosis. We collect real dementia data from clinical practice, and we apply the data-driven algorithms developed to assess the concordance between the reference models developed by hand and the models derived from real clinical data.en
dc.language.isoenen
dc.publisherUniversity of Stirlingen
dc.subjectBayesian networksen
dc.subjectBayesian network learningen
dc.subjectParticle Swarm Optimisationen
dc.subjectDementiaen
dc.subjectDementia diagnosisen
dc.subjectAlzheimer's diseaseen
dc.subjectApplications of Bayesian networksen
dc.subjectHand-crafting Bayesian networksen
dc.subjectExpert-driven Bayesian networksen
dc.subjectConstructing Bayesian networksen
dc.subject.lcshBayesian statistical decision theory Data processingen
dc.subject.lcshDementia Research Statistical methodsen
dc.subject.lcshDementia Diagnosisen
dc.titleBayesian belief networks for dementia diagnosis and other applications: a comparison of hand-crafting and construction using a novel data driven techniqueen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnameDoctor of Philosophyen
dc.contributor.funderEPSRCen
dc.contributor.affiliationSchool of Natural Sciences-
dc.contributor.affiliationComputing Science and Mathematics-
Appears in Collections:Computing Science and Mathematics eTheses

Files in This Item:
File Description SizeFormat 
Lloyd_Oteniya_phd_thesis.pdf1.55 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.