Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34678
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvdeeff, Melissaen_UK
dc.date.accessioned2022-11-17T01:03:29Z-
dc.date.available2022-11-17T01:03:29Z-
dc.date.issued2019-12en_UK
dc.identifier.other130en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34678-
dc.description.abstractThis article presents an overview of the first AI-human collaborated album, Hello World, by SKYGGE, which utilizes Sony’s Flow Machines technologies. This case study is situated within a review of current and emerging uses of AI in popular music production, and connects those uses with myths and fears that have circulated in discourses concerning the use of AI in general, and how these fears connect to the idea of an audio uncanny valley. By proposing the concept of an audio uncanny valley in relation to AIPM (artificial intelligence popular music), this article offers a lens through which to examine the more novel and unusual melodies and harmonization made possible through AI music generation, and questions how this content relates to wider speculations about posthumanism, sincerity, and authenticity in both popular music, and broader assumptions of anthropocentric creativity. In its documentation of the emergence of a new era of popular music, the AI era, this article surveys: (1) The current landscape of artificial intelligence popular music focusing on the use of Markov models for generative purposes; (2) posthumanist creativity and the potential for an audio uncanny valley; and (3) issues of perceived authenticity in the technologically mediated “voice”.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationAvdeeff M (2019) Artificial Intelligence & Popular Music: SKYGGE, Flow Machines, and the Audio Uncanny Valley. <i>Arts</i>, 8 (4), Art. No.: 130. https://doi.org/10.3390/arts8040130en_UK
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectartificial intelligenceen_UK
dc.subjectpopular musicen_UK
dc.subjectposthumanen_UK
dc.subjectcreativityen_UK
dc.subjectuncanny valleyen_UK
dc.titleArtificial Intelligence & Popular Music: SKYGGE, Flow Machines, and the Audio Uncanny Valleyen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/arts8040130en_UK
dc.citation.jtitleArtsen_UK
dc.citation.issn2076-0752en_UK
dc.citation.volume8en_UK
dc.citation.issue4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderCoventry Universityen_UK
dc.author.emailmelissa.avdeeff@stir.ac.uken_UK
dc.citation.date11/10/2019en_UK
dc.contributor.affiliationCoventry Universityen_UK
dc.identifier.isiWOS:000506640300008en_UK
dc.identifier.wtid1851368en_UK
dc.date.accepted2019-10-08en_UK
dcterms.dateAccepted2019-10-08en_UK
dc.date.filedepositdate2022-11-14en_UK
dc.subject.tagAcademic discoursesen_UK
dc.subject.tagArtificial Intelligenceen_UK
dc.subject.tagAudiencesen_UK
dc.subject.tagMusic Perceptionen_UK
dc.subject.tagSociology of Technologyen_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAvdeeff, Melissa|en_UK
local.rioxx.projectProject ID unknown|Coventry University|http://dx.doi.org/10.13039/501100001313en_UK
local.rioxx.freetoreaddate2022-11-14en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-11-14|en_UK
local.rioxx.filenamearts-08-00130-v3.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2076-0752en_UK
Appears in Collections:Communications, Media and Culture Journal Articles

Files in This Item:
File Description SizeFormat 
arts-08-00130-v3.pdfFulltext - Published Version488.43 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.