Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33137
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles
Peer Review Status: Refereed
Title: Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans
Author(s): Willis, Craig R G
Gallagher, Iain J
Wilkinson, Daniel J
Brook, Matthew S
Bass, Joseph J
Phillips, Bethan E
Smith, Kenneth
Etheridge, Timothy
Stokes, Tanner
McGlory, Chris
Gorissen, Stefan H M
Szewczyk, Nathaniel J
Phillips, Stuart M
Atherton, Philip J
Issue Date: Sep-2021
Date Deposited: 24-Aug-2021
Citation: Willis CRG, Gallagher IJ, Wilkinson DJ, Brook MS, Bass JJ, Phillips BE, Smith K, Etheridge T, Stokes T, McGlory C, Gorissen SHM, Szewczyk NJ, Phillips SM & Atherton PJ (2021) Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans. FASEB Journal, 35 (9), Art. No.: e21830. https://doi.org/10.1096/fj.202100276RR
Abstract: Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2O; 3 mL.kg−1), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters (“modules”) with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.
DOI Link: 10.1096/fj.202100276RR
Rights: © 2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
fj.202100276RR.pdfFulltext - Published Version1.84 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.