Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEvans, Matthew R.-
dc.contributor.authorTrinder, Mark Nicholas-
dc.date.accessioned2005-06-30T09:21:03Z-
dc.date.available2005-06-30T09:21:03Z-
dc.date.issued2003-08-
dc.identifier.urihttp://hdl.handle.net/1893/32-
dc.description.abstractA simulation matrix population model of a small population of wrens (Troglodytes troglodytes) is presented. The field work methods used to obtain and analyse the demographic rates are provided. This includes a description of the use of miniature radio tags to track juvenile (post-fledging) survival and dispersal, and capture mark recapture analysis of an eight year dataset to estimate adult survival rates, taking into account environmental variation and density dependence. Age related reproductive rates were obtained from detailed nest surveys. Using these demographic rates (means and variances), and information on density dependence in survival and breeding, a simulation matrix model was developed using Matlab (The MathWorks, Inc.). The operation of this model and its outputs are explained in detail, with particular reference to the methods employed to incorporate both density dependent survival and reproduction and environmental and demographic stochasticity. This model is then used to illustrate how, under plausible conditions of density dependence and stochasticity, large discrepancies are obtained between the deterministic, density independent elasticities of the population growth rate (λ) and the stochastic, density dependent elasticities of the equilibrium population size, extinction probability and invasion exponent. Since the elasticities of λ are often used to guide the management of endangered species, these results are particularly relevant to workers in the field of rare species conservation. While the importance of including environmental variation in the form of stochastic population simulations seems to now be generally accepted, the role of density dependent population regulation is still infrequently considered. Since one of the most common causes of population decline is habitat destruction, leading to an increase in population density within the remaining areas of habitat, this omission may rarely be justified. It is recommended that when elasticity analysis is conducted as part of species conservation efforts, both density dependence and stochasticity are included. Failure to do so may result in the misguided management of endangered species.en
dc.format.extent2645775 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherUniversity of Stirlingen
dc.subject.lcshBirds Great Britain Geograpical distributionen
dc.subject.lcshBirds Scotland Geographical distributionen
dc.titleAn investigation of matrix population model assumptions: wrens (Troglodytes troglodytes) as a case studyen
dc.typeThesis or Dissertation-
dc.type.qualificationlevelDoctoral-
dc.type.qualificationnameDoctor of Philosophy (PHD(R))-
dc.contributor.affiliationSchool of Natural Sciences-
dc.contributor.affiliationBiological and Environmental Sciences-
Appears in Collections:Biological and Environmental Sciences eTheses

Files in This Item:
File Description SizeFormat 
Mark Trinder PhD thesis_2003.pdf2.58 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.