Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31444
Appears in Collections:Law and Philosophy Journal Articles
Peer Review Status: Refereed
Title: Non-cuttable material created through local resonance and strain rate effects
Author(s): Szyniszewski, Stefan
Vogel, Rene
Bittner, Florian
Jakubczyk, Ewa
Anderson, Miranda
Pelacci, Manuel
Chinedu, Ajoku
Endres, Hans-Josef
Hipke, Thomas
Contact Email: miranda.anderson@stir.ac.uk
Issue Date: 2020
Citation: Szyniszewski S, Vogel R, Bittner F, Jakubczyk E, Anderson M, Pelacci M, Chinedu A, Endres H & Hipke T (2020) Non-cuttable material created through local resonance and strain rate effects. Scientific Reports, 10, Art. No.: 11539. https://doi.org/10.1038/s41598-020-65976-0
Abstract: We have created a new architected material, which is both highly deformable and ultra-resistant to dynamic point loads. The bio-inspired metallic cellular structure (with an internal grid of large ceramic segments) is non-cuttable by an angle grinder and a power drill, and it has only 15% steel density. Our architecture derives its extreme hardness from the local resonance between the embedded ceramics in a flexible cellular matrix and the attacking tool, which produces high-frequency vibrations at the interface. The incomplete consolidation of the ceramic grains during the manufacturing also promoted fragmentation of the ceramic spheres into micron-size particulate matter, which provided an abrasive interface with increasing resistance at higher loading rates. The contrast between the ceramic segments and cellular material was also effective against a waterjet cutter because the convex geometry of the ceramic spheres widened the waterjet and reduced its velocity by two orders of magnitude. Shifting the design paradigm from static resistance to dynamic interactions between the material phases and the applied load could inspire novel, metamorphic materials with pre-programmed mechanisms across different length scales.
DOI Link: 10.1038/s41598-020-65976-0
Rights: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
41598_2020_65976_OnlinePDF_2.pdfFulltext - Published Version9.53 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.