Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30890
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIervolino, Pasqualeen_UK
dc.contributor.authorGuida, Raffaellaen_UK
dc.contributor.authorAmitrano, Donatoen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.date.accessioned2020-03-31T00:05:28Z-
dc.date.available2020-03-31T00:05:28Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30890-
dc.description.abstractIn the Synthetic Aperture Radar (SAR) framework many detection algorithms and techniques have been published in the recent literature; however the detection of vessels whose dimensions are in the order of the image spatial resolution is still challenging in rough sea state scenarios. This issue is addressed in the paper presented here by comparing rationale and performance of two detectors developed by the same authors: the Generalized Likelihood Ratio Test (GLRT) and the Intensity Dual-Polarization Ratio Anomaly Detector (iDPolRAD). Both detectors are tested on a dual-polarization VV/VH Interferometric Wide Swath Sentinel-1 image acquired over the Suruga Bay on the Pacific Coast of Japan. The theory is presented here and the two detectors are compared against the Cell Average-Constant False Alarm Algorithm (CA-CFAR) showing both better performance than CFAR in terms of false alarms rejection.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationIervolino P, Guida R, Amitrano D & Marino A (2019) SAR Ship Detection for Rough Sea Conditions. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium Proceedings. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28.07.2019-02.08.2019. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/igarss.2019.8900332en_UK
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectSARen_UK
dc.subjectMaritime Surveillanceen_UK
dc.subjectship detectionen_UK
dc.subjectGeneralized Likelihood Ratio Test (GLRT)en_UK
dc.subjectpolarimetryen_UK
dc.titleSAR Ship Detection for Rough Sea Conditionsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/igarss.2019.8900332en_UK
dc.citation.issn2153-7003en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleIGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium Proceedingsen_UK
dc.citation.conferencedates2019-07-28 - 2019-08-02en_UK
dc.citation.conferencelocationYokohama, Japanen_UK
dc.citation.conferencenameIGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposiumen_UK
dc.citation.date14/11/2019en_UK
dc.citation.isbn978-1-5386-9154-0en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationUniversity of Surreyen_UK
dc.contributor.affiliationUniversity of Surreyen_UK
dc.contributor.affiliationUniversity of Surreyen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000519270600119en_UK
dc.identifier.scopusid2-s2.0-85079409578en_UK
dc.identifier.wtid1576282en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2019-05-27en_UK
dcterms.dateAccepted2019-05-27en_UK
dc.date.filedepositdate2020-02-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorIervolino, Pasquale|en_UK
local.rioxx.authorGuida, Raffaella|en_UK
local.rioxx.authorAmitrano, Donato|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-02-27en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-02-27|en_UK
local.rioxx.filenameSAR SHIP DETECTION FOR ROUGH SEA CONDITIONS.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-5386-9154-0en_UK
Appears in Collections:Biological and Environmental Sciences Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
SAR SHIP DETECTION FOR ROUGH SEA CONDITIONS.pdfFulltext - Accepted Version511.57 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.