Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorKim, Suk-Junen_UK
dc.contributor.authorWang, Szu-Hanen_UK
dc.contributor.authorChan, Stellaen_UK
dc.contributor.authorLawson, Jamie Aen_UK
dc.date.accessioned2019-04-12T14:30:15Z-
dc.date.available2019-04-12T14:30:15Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29310-
dc.description.abstractThe sounds that we associate with particular places are tightly interwoven with our memories and sense of belonging. It is assumed that such an association is a complex process, and much of its mechanism is hidden from analytical examination. The association of sound to place has been much explored and examined by artistic approaches. For example, soundscape composition, which makes great use of recorded and barely-processed sounds from places in the compositional practice, highlights the power of the association. However, it does not offer us a scientific insight into its process, particularly, the role of familiarity of sounds people hear and their association to specific places. We describe a platform designed to assist in gathering the sounds that a group of people associate with a place. A web-based evolutionary algorithm, with human-in-the-loop fitness evaluations, ranks and recombines sounds to find collections that the group rates as familiar. An experiment involving independent groups of people associated with four geographical locations shows that the process does indeed find sounds deemed familiar by participants.en_UK
dc.language.isoenen_UK
dc.publisherUniversity of Stirlingen_UK
dc.relationBrownlee A, Kim S, Wang S, Chan S & Lawson JA (2019) Crowd Sourcing The Sounds Of Places With A Web Based Genetic Algorithm Techreport. University of Stirling. Stirling.en_UK
dc.rightsAuthors retain copyright.en_UK
dc.subjectsounden_UK
dc.subjectsoundscapesen_UK
dc.subjecthuman-in-the-loopen_UK
dc.subjectmooden_UK
dc.titleCrowd Sourcing The Sounds Of Places With A Web Based Genetic Algorithm Techreporten_UK
dc.typeTechnical Reporten_UK
dc.contributor.sponsorUniversity of Stirlingen_UK
dc.citation.spage6en_UK
dc.citation.publicationstatusUnpublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderScottish Crucibleen_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.publisher.addressStirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Aberdeenen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Aberdeenen_UK
dc.identifier.wtid1258636en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dcterms.dateAccepted2019-12-31en_UK
dc.date.filedepositdate2019-03-29en_UK
dc.relation.funderprojectCrowd-sourcing the aural identities of places by evolutionary optimisationen_UK
dc.relation.funderref900001001053en_UK
dc.subject.tagMetaheuristicsen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeTechnical Reporten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorKim, Suk-Jun|en_UK
local.rioxx.authorWang, Szu-Han|en_UK
local.rioxx.authorChan, Stella|en_UK
local.rioxx.authorLawson, Jamie A|en_UK
local.rioxx.project900001001053|Scottish Crucible|en_UK
local.rioxx.freetoreaddate2019-04-12en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-04-12|en_UK
local.rioxx.filenameCrowd_Sourcing_the_Sounds_of_Places_with_a_Web_Based_Genetic_Algorithm_techreport.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Technical Reports

Files in This Item:
File Description SizeFormat 
Crowd_Sourcing_the_Sounds_of_Places_with_a_Web_Based_Genetic_Algorithm_techreport.pdfFulltext - Published Version736.61 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.