Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29140
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorDos Santos, Jefersson Aen_UK
dc.contributor.authorCancian, Leonardoen_UK
dc.contributor.authorBorges, Bruno Den_UK
dc.contributor.authorSilva, Thiago S Fen_UK
dc.contributor.authorMorellato, Leonor Patriciaen_UK
dc.contributor.authorTorres, Ricardo da Sen_UK
dc.date.accessioned2019-03-29T01:02:45Z-
dc.date.available2019-03-29T01:02:45Z-
dc.date.issued2017en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29140-
dc.description.abstractVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationNogueira K, Dos Santos JA, Cancian L, Borges BD, Silva TSF, Morellato LP & Torres RdS (2017) Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets. In: <i>2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</i>. IEEE International Geoscience and Remote Sensing Symposium Proceedings. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23.07.2017-28.07.2017. Piscataway, NJ, USA: IEEE, pp. 3787-3790. https://doi.org/10.1109/IGARSS.2017.8127824en_UK
dc.relation.ispartofseriesIEEE International Geoscience and Remote Sensing Symposium Proceedingsen_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectDeep Learningen_UK
dc.subjectPlant Speciesen_UK
dc.subjectSemantic Image Segmentationen_UK
dc.subjectUnmanned Aerial Vehiclesen_UK
dc.titleSemantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNetsen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[08127824.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/IGARSS.2017.8127824en_UK
dc.citation.issn2153-7003en_UK
dc.citation.spage3787en_UK
dc.citation.epage3790en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailthiago.sf.silva@stir.ac.uken_UK
dc.citation.btitle2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)en_UK
dc.citation.conferencedates2017-07-23 - 2017-07-28en_UK
dc.citation.conferencelocationFort Worth, TX, USAen_UK
dc.citation.conferencename2017 IEEE International Geoscience and Remote Sensing Symposiumen_UK
dc.citation.date04/12/2017en_UK
dc.citation.isbn9781509049516en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationSao Paulo State Universityen_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.identifier.scopusid2-s2.0-85041842843en_UK
dc.identifier.wtid1239422en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.date.accepted2017-03-23en_UK
dcterms.dateAccepted2017-03-23en_UK
dc.date.filedepositdate2019-03-28en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNogueira, Keiller|en_UK
local.rioxx.authorDos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.authorCancian, Leonardo|en_UK
local.rioxx.authorBorges, Bruno D|en_UK
local.rioxx.authorSilva, Thiago S F|0000-0001-8174-0489en_UK
local.rioxx.authorMorellato, Leonor Patricia|en_UK
local.rioxx.authorTorres, Ricardo da S|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2267-11-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename08127824.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781509049516en_UK
Appears in Collections:Biological and Environmental Sciences Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
08127824.pdfFulltext - Published Version969.85 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.