Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/29079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.editorMerelo, JJen_UK
dc.contributor.editorRosa, Aen_UK
dc.contributor.editorCadenas, JMen_UK
dc.contributor.editorDourado, Aen_UK
dc.contributor.editorMadani, Ken_UK
dc.contributor.editorFilipe, Jen_UK
dc.date.accessioned2019-03-22T01:02:39Z-
dc.date.available2019-03-22T01:02:39Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/29079-
dc.description.abstractThe Multilayer Perceptron (MLP) is a neural network architecture that is widely used for regression, classification and time series forecasting. One often cited disadvantage of the MLP, however, is the difficulty associated with human understanding of a particular MLP’s function. This so called black box limitation is due to the fact that the weights of the network reveal little about structure of the function they implement. This paper proposes a method for understanding the structure of the function learned by MLPs that model functions of the class f:{−1,1}^n->R. This includes regression and classification models. A Walsh decomposition of the function implemented by a trained MLP is performed and the coefficients analysed. The advantage of a Walsh decomposition is that it explicitly separates the contribution to the function made by each subset of input neurons. It also allows networks to be compared in terms of their structure and complexity. The method is demonstrated on some small toy functions and on the larger problem of the MNIST handwritten digit classification data set.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationSwingler K (2016) Opening the Black Box: Analysing MLP Functionality Using Walsh Functions. In: Merelo J, Rosa A, Cadenas J, Dourado A, Madani K & Filipe J (eds.) Computational Intelligence. Studies in Computational Intelligence, 620. International Joint Conference on Computational Intelligence (IJCCI) 2014, Rome, Italy, 22.10.2014-24.10.2014. Cham, Switzerland: Springer, pp. 303-323. https://doi.org/10.1007/978-3-319-26393-9_18en_UK
dc.relation.ispartofseriesStudies in Computational Intelligence, 620en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Merelo J., Rosa A., Cadenas J., Dourado A., Madani K., Filipe J. (eds) Computational Intelligence. Studies in Computational Intelligence, vol 620. Springer, Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-26393-9_18en_UK
dc.subjectBlack box neural networken_UK
dc.subjectMLPen_UK
dc.subjectMultilayer perceptionsen_UK
dc.subjectWalsh functionsen_UK
dc.subjectNetwork function analysisen_UK
dc.titleOpening the Black Box: Analysing MLP Functionality Using Walsh Functionsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-319-26393-9_18en_UK
dc.citation.issn1860-949Xen_UK
dc.citation.spage303en_UK
dc.citation.epage323en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailkevin.swingler@stir.ac.uken_UK
dc.citation.btitleComputational Intelligenceen_UK
dc.citation.conferencedates2014-10-22 - 2014-10-24en_UK
dc.citation.conferencelocationRome, Italyen_UK
dc.citation.conferencenameInternational Joint Conference on Computational Intelligence (IJCCI) 2014en_UK
dc.citation.date25/11/2015en_UK
dc.citation.isbn978-3-319-26391-5en_UK
dc.citation.isbn978-3-319-26393-9en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-84949920926en_UK
dc.identifier.wtid564460en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dcterms.dateAccepted2015-11-25en_UK
dc.date.filedepositdate2019-03-18en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMerelo, JJ|en_UK
local.rioxx.contributorRosa, A|en_UK
local.rioxx.contributorCadenas, JM|en_UK
local.rioxx.contributorDourado, A|en_UK
local.rioxx.contributorMadani, K|en_UK
local.rioxx.contributorFilipe, J|en_UK
local.rioxx.freetoreaddate2019-03-18en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-03-18|en_UK
local.rioxx.filenameSwinglerSCI2015.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-26393-9en_UK
Appears in Collections:Computing Science and Mathematics Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
SwinglerSCI2015.pdfFulltext - Accepted Version241.85 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.