Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/28841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKidd, Petra Susan-
dc.date.accessioned2019-02-15T16:56:25Z-
dc.date.available2019-02-15T16:56:25Z-
dc.date.issued1998-
dc.identifier.urihttp://hdl.handle.net/1893/28841-
dc.description.abstractThe effects of low pH, AI, organic and phenolic acids on the growth of naturally occurring plant species were determined. The amelioration of Al toxicity by Si and organic acids was also investigated. Plants were grown from seeds in nutrient solutions simulating the ionic composition of soil solutions from five soil types ranging from acidic peat to calcareous soil. Soil solutions were extracted and analysed using centrifugation, with and without an immiscible displacent (1,1, I-trichloroethane), at both low (4000 rpm) and high speed (12000 rpm). Races of Holcus lanatus L. and Betula pendula Roth. from acidic soils (FM and SMM) grew better in low pH solutions (pH< 4.0). In acid-sensitive races Ca absorption was inhibited at low pH. Races of B.pendula from strongly to moderately acidic soils (FM, SMM, KP) were AI-tolerant and effectively excluded Al from shoots. Root elongation and leaf expansion were inhibited by all Al concentrations in races from calcareous soils (KR). Low concentrations of Al stimulated growth in some races of B.pendula (2 and 5 mg Al lˉ¹) and Anthoxanthum odoratum L. (1.3 and 2.7 mg Al lˉ¹). Al (25 and 35 mg lˉ¹) inhibited root and shoot growth in H.lanatus. Si (1500 and 2500 µM Si(OH)₄) addition to nutrient solutions alleviated AI-damage and restored nutrient uptake to values similar to those in plants grown with neither Al or Si. The ameliorative effects of Si were possibly achieved through AI/Si co-deposition in the root cell walls and maintenance of Golgi activity. Si at 1500 µM was beneficial but inhibited growth at 2500 µM. Al and hydroxyaluminosilicates at pH 5.6 were not toxic. Formic and tartaric acid ameliorated Al toxicity by reducing its availability. These organic acids on their own stimulated growth in H.lanatus and Deschampsia flexuosa (L.) Trin. Phenolic acids stimulated growth of H.lanatus in acidic solutions (pH 4.0) but not near-neutral solutions, particularly in races from soils high in phenolics. Addition of plant residue to acidic peats increased the growth of races from calcareous and acidic mineral soils.en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Stirlingen_GB
dc.subject.lcshSoil acidityen_GB
dc.subject.lcshPlants - Effect of soil acidity onen_GB
dc.titleAspects of soil acidity and their effect on plant growthen_GB
dc.typeThesis or Dissertationen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnameDoctor of Philosophyen_GB
dc.contributor.affiliationFaculty of Natural Sciencesen_GB
dc.contributor.affiliationDepartment of Biological Scienceen_GB
Appears in Collections:eTheses from Faculty of Natural Sciences legacy departments

Files in This Item:
File Description SizeFormat 
Kidd-thesis.pdf34.65 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.