Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Conference Papers and Proceedings
Author(s): Davaasuren, Narangerel
Marino, Armando
Boardman, Carl
Alparone, Matteo
Nunziata, Ferdinanda
Ackermann, Nicolas
Hajnsek, Irena
Title: Detecting microplastics pollution in world oceans using sar remote sensing
Citation: Davaasuren N, Marino A, Boardman C, Alparone M, Nunziata F, Ackermann N & Hajnsek I (2018) Detecting microplastics pollution in world oceans using sar remote sensing. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IGARSS 2018 International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22.07.2018-27.07.2018. Piscataway, NJ, USA: IEEE, pp. 938-941.
Issue Date: 31-Dec-2018
Date Deposited: 9-Jan-2019
Series/Report no.: IEEE International Symposium on Geoscience and Remote Sensing IGARSS
Conference Name: IGARSS 2018 International Geoscience and Remote Sensing Symposium
Conference Dates: 2018-07-22 - 2018-07-27
Conference Location: Valencia, Spain
Abstract: Plastic pollution in world oceans is estimated to have reached 270.000 tones, or 5.25 trillion pieces. This plastic is now ubiquitous, however due to ocean circulation patterns, it accumulates in the ocean gyres, creating “garbage patches”. This plastic debris is colonized by microorganisms which can create unique surfactants and bio-film ecosystems. Microbial colonization is the first step towards disintegration and degradation of plastic materials: a process that releases metabolic by-products from energy synthesis. These byproducts include the release of short-chain and more complex carbon molecules in the form of surfactants, which we hypothesize will affect the fluid dynamic properties of waves (change in viscosity and surface tension) and make them detectable by the SAR sensor. In this study we used Sentinel-1A and COSMO-SkyMed SAR images in selected sites of the North Pacific and North Atlantic oceans, close to the ocean gyres and away from the coastal interference. Together with SAR processing we conducted contextual image analysis, using ocean geophysical products of the sea surface temperature, surface wind, chlorophyll, wave heights and wave spectrum of the ocean surface. In addition, we started lab experiments under controlled conditions to test the behaviour of microbes colonizing the two most common marine pollutants, polyethylene (PE) and polyethylene terephthalate (PET) microplastics. The analysis of the SAR images had shown that a combination of surface wind speed and Langmuir cells- ocean circulation pattern is the main controlling factor in creating the distinct appearance of the surfactants, sea-slicks and microbial bio-films. The preliminary conclusion of our study is that SAR remote sensing may be able to detect plastic pollution in the open oceans and this method can be extended to other areas.
Status: AM - Accepted Manuscript
Rights: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Files in This Item:
File Description SizeFormat 
IGARSS_final_Narangerel_Davaasuren.pdfFulltext - Accepted Version521.56 kBAdobe PDFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.