Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilne, Peteren_UK
dc.date.accessioned2013-06-09T05:33:45Z-
dc.date.available2013-06-09T05:33:45Z-
dc.date.issued2010en_UK
dc.identifier.urihttp://hdl.handle.net/1893/2804-
dc.description.abstractVarious natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid (i) to which properties of theories result in the presence of which rules of inference, and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions determined by the formulas occurring as premises and conclusion of the invalid inference for which a counterexample is to be constructed. We obtain an elegant formulation of classical propositional logic with the subformula property and a singularly inelegant formulation of classical first-order logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula results for classical first-order logic obtained as consequences of normalization theorems by Dag Prawitz and Gunnar Stalmarck.en_UK
dc.language.isoenen_UK
dc.publisherCambridge University Press for the Association for Symbolic Logicen_UK
dc.relationMilne P (2010) Subformula and separation properties in natural deduction via small Kripke models. The Review of Symbolic Logic, 3 (2), pp. 175-227. https://doi.org/10.1017/S175502030999030Xen_UK
dc.rightsPublished in The Review of Symbolic Logic by Cambridge University Press for the Association for Symbolic Logic. Copyright: Association for Symbolic Logic, 2010en_UK
dc.subjectModality (Logic)en_UK
dc.titleSubformula and separation properties in natural deduction via small Kripke modelsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1017/S175502030999030Xen_UK
dc.citation.jtitleReview of Symbolic Logicen_UK
dc.citation.issn1755-0211en_UK
dc.citation.issn1755-0203en_UK
dc.citation.volume3en_UK
dc.citation.issue2en_UK
dc.citation.spage175en_UK
dc.citation.epage227en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationPhilosophyen_UK
dc.identifier.isiWOS:000278948200001en_UK
dc.identifier.scopusid2-s2.0-79956093834en_UK
dc.identifier.wtid821989en_UK
dcterms.dateAccepted2010-12-31en_UK
dc.date.filedepositdate2011-03-16en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMilne, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2011-03-16en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2011-03-16|en_UK
local.rioxx.filenameMilne-SUBFORMULA AND SEPARATION PROPERTIES IN NATURAL DEDUCTION VIA SMALL KRIPKE MODELS.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1755-0203en_UK
Appears in Collections:Law and Philosophy Journal Articles

Files in This Item:
File Description SizeFormat 
Milne-SUBFORMULA AND SEPARATION PROPERTIES IN NATURAL DEDUCTION VIA SMALL KRIPKE MODELS.pdfFulltext - Published Version362.92 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.