Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25404
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWillby, Nigel-
dc.contributor.advisorVallejo-Marin, Mario-
dc.contributor.authorPattison, Zarah-
dc.date.accessioned2017-05-30T14:11:16Z-
dc.date.available2017-05-30T14:11:16Z-
dc.date.issued2016-09-
dc.identifier.citationPattison et al. 2017 Twenty years of change in riverside vegetation: what role have invasive alien plants played? Applied Vegetation Science. DOI: 10.1111/avsc.12297en_GB
dc.identifier.urihttp://hdl.handle.net/1893/25404-
dc.description.abstractBiological invasions are reportedly one of the major contributory factors to biodiversity loss worldwide. The impacts of invasive alien plant (IAP) species on native communities are widely documented in the scientific literature, however, there is still a lack of detailed information on their impacts within the most vulnerable habitats. Riparian habitats are highly dynamic systems and naturally disturbed, making them particularly vulnerable to invasion. Climate change, directly or indirectly, is also predicted to adversely impact river systems, which may subsequently alter invasion rates and the impacts of IAPs. However, the interactions between climate and IAPs and their combined effects on vegetation have rarely been examined. To address these knowledge gaps, this thesis investigates: (1) the role of environmental variables, such as sediment loading or climate-related changes to river flow regime, on the abundance of IAPs within riparian zones; (2) how variation in IAP abundance impacts native vegetation, relative to the effects of native dominant plant species and (3) some of the mechanisms underlying the effects of IAPs in riparian habitats. Historic and recent field survey data were used to investigate changes in riparian vegetation on British rivers during the last 20 years. Analyses indicate that IAPs had a negative but small effect on native plant diversity. Overall, changes in land use and differences in flow regime between recording periods were the most important predictors of plant community change. Specifically, IAPs had a greater probability of being present along lowland rivers that experienced increased frequency of high flow events. On a local scale across rivers in Scotland, the abundance of IAPs was constrained by greater soil moisture in summer, whilst greater abundance was associated with tree-lined banks. Both native dominant species and IAPs negatively affected subordinate species abundance to a greater extent than species richness, although this effect varied spatially with bank elevation. Artificial turf mats were used to quantify viable propagules within riverine sediment deposited over-winter along invaded riverbanks. The data indicate that there is a legacy effect of IAP abundance, with the most invaded sites being associated with higher sediment loading the following year, though, contrary to the general pattern, 12 sediment associated propagules were scarcer at invaded sites. Moreover, lower above-ground native diversity was associated with sites which had been previously invaded. Plant species composition in the propagule bank and above-ground vegetation were highly dissimilar, particularly closest to the water’s edge at highly invaded sites. This suggests that mono-specific stands of IAPs proliferate best under less disturbed environmental conditions, although fluvial disturbance events may be required to create opportunities for initial establishment. The propagule bank contributed very little to the above-ground vegetation, nor did it limit invasion, suggesting that above-ground plant composition is largely dictated by competitive interactions. The findings presented in this thesis suggest that invasion by IAPs is an additional stressor for native vegetation within riparian habitats, modifying above-ground plant communities via competition and suppressing recruitment from the propagule bank. However, native dominant species common in riparian habitats also negatively impact, subordinate species via competition, in some cases equalling the effect of IAPs. Native dominant and IAP species are differently affected by environmental factors operating in the riparian zone, which may provide future opportunities for reducing and managing invasions.en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Stirlingen_GB
dc.subjectinvasive speciesen_GB
dc.subjectcommunity compositionen_GB
dc.subjectvegetationen_GB
dc.subjectriparian plantsen_GB
dc.subjectalien plantsen_GB
dc.subjectScotlanden_GB
dc.subjectspecies diversityen_GB
dc.subjectclimate changeen_GB
dc.subjectriver flowen_GB
dc.subjectenvironmental changeen_GB
dc.subjectcompetitionen_GB
dc.subjectmixed effects modellingen_GB
dc.subjectmodel averagingen_GB
dc.subjectspecies richnessen_GB
dc.subjectsedimentationen_GB
dc.subjectseed banken_GB
dc.subject.lcshInvasive plants Environmental aspects Scotlanden_GB
dc.subject.lcshRiparian plants Environmental aspects Scotlanden_GB
dc.titleEffects of invasive alien plants on riparian vegetation and their response to environmental factorsen_GB
dc.typeThesis or Dissertationen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnameDoctor of Philosophyen_GB
dc.contributor.funderScottish Natural Heritage, Scottish Environmental Protection Agency, University of Stirlingen_GB
dc.author.emailzarahpattison@yahoo.co.uken_GB
Appears in Collections:Biological and Environmental Sciences eTheses

Files in This Item:
File Description SizeFormat 
PhD Thesis_ Pattison_Z.pdfMain thesis7.68 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.