Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWilson, Annaen_UK
dc.contributor.authorThompson, Terrie Lynnen_UK
dc.contributor.authorWatson, Cateen_UK
dc.contributor.authorDrew, Valerieen_UK
dc.contributor.authorDoyle, Sarahen_UK
dc.date.accessioned2018-02-22T23:18:09Z-
dc.date.available2018-02-22T23:18:09Z-
dc.date.issued2017-04-03en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25250-
dc.description.abstractRecent critiques of both the uses of and discourse surrounding big data have raised important questions as to the extent to which big data and big data techniques should be embraced. However, while the context-dependence of data has been recognized, there remains a tendency among social theorists and other commentators to treat certain aspects of the big data phenomenon, including not only the data but also the methods and tools used to move from data as database to data that can be interpreted and assigned meaning, in a homogenizing way. In this paper, we seek to challenge this tendency, and to explore the ways in which explicit consideration of the plurality of big data might inform particular instances of its exploitation. We compare one currently popular big data-inspired innovation — learning analytics — with three other big data contexts — the physical sciences, business intelligence and public health. Through these comparisons, we highlight some dangers of learning analytics implemented without substantial theoretical, ethical and design effort. In so doing, we also highlight just how plural data, analytical approaches and intentions are, and suggest that each new big data context needs to be recognized in its own singularity.en_UK
dc.language.isoenen_UK
dc.publisherUniversity of Illinois at Chicago Libraryen_UK
dc.relationWilson A, Thompson TL, Watson C, Drew V & Doyle S (2017) Big data and learning analytics: Singular or plural?. First Monday, 22 (4). http://firstmonday.org/ojs/index.php/fm/article/view/6872/6089#authoren_UK
dc.rights“Big data and learning analytics: Singular or plural?” by Anna Wilson, Terrie Lynn Thompson, Cate Watson, Valerie Drew, and Sarah Doyle is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_UK
dc.titleBig data and learning analytics: Singular or plural?en_UK
dc.typeJournal Articleen_UK
dc.citation.jtitleFirst Mondayen_UK
dc.citation.issn1396-0466en_UK
dc.citation.volume22en_UK
dc.citation.issue4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://firstmonday.org/ojs/index.php/fm/article/view/6872/6089#authoren_UK
dc.citation.date03/04/2017en_UK
dc.contributor.affiliationEducationen_UK
dc.contributor.affiliationEducationen_UK
dc.contributor.affiliationEducationen_UK
dc.contributor.affiliationEducationen_UK
dc.contributor.affiliationEducationen_UK
dc.identifier.scopusid2-s2.0-85017136653en_UK
dc.identifier.wtid531772en_UK
dc.contributor.orcid0000-0001-6928-1689en_UK
dc.contributor.orcid0000-0002-8166-3791en_UK
dc.contributor.orcid0000-0003-1807-6460en_UK
dc.contributor.orcid0000-0003-3449-6174en_UK
dc.date.accepted2017-03-20en_UK
dcterms.dateAccepted2017-03-20en_UK
dc.date.filedepositdate2017-04-06en_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWilson, Anna|0000-0001-6928-1689en_UK
local.rioxx.authorThompson, Terrie Lynn|0000-0002-8166-3791en_UK
local.rioxx.authorWatson, Cate|0000-0003-1807-6460en_UK
local.rioxx.authorDrew, Valerie|0000-0003-3449-6174en_UK
local.rioxx.authorDoyle, Sarah|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-04-06en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc/4.0/|2017-04-06|en_UK
local.rioxx.filenameWilson.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Faculty of Social Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Wilson.pdfFulltext - Published Version207.44 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.